Goicoechea Miguel, Vidal Andrea, Capparelli Edmund, Rigby Andrew, Kemper Carol, Diamond Catherine, Witt Mallory D, Haubrich Richard
University of California San Diego, San Diego, CA, USA.
Antivir Ther. 2007;12(1):55-62.
To develop a computer-based system for modelling and interpreting plasma antiretroviral concentrations for therapeutic drug monitoring (TDM).
Data were extracted from a prospective TDM study of 199 HIV-infected patients (CCTG 578). Lopinavir (LPV) and efavirenz (EFV) pharmacokinetic (PK) parameters were modelled using a Bayesian method and interpreted by an expert committee of HIV specialists and pharmacologists who made TDM recommendations. These PK models and recommendations formed the knowledge base to develop an artificial intelligence (AI) system that could estimate drug exposure, interpret PK data and generate TDM recommendations. The modelled PK exposures and expert committee TDM recommendations were considered optimum and used to validate results obtained by the AI system.
A group of patients, 67 on LPV, 46 on EFV and three on both drugs, were included in this analysis. Correlations were high for LPV and EFV estimated trough and 4 h post-dose concentrations between the Al estimates and modelled values (r > 0.79 for all comparisons; P < 0.0001). Although trough concentrations were similar, significant differences were seen for mean predicted 4 h concentrations for EFV (4.16 microg/ml versus 3.89 microg/ml; P = 0.02) and LPV (7.99 microg/ml versus 8.79 microg/ml; P < 0.001). The AI and expert committee TDM recommendations agreed in 53 out of 69 LPV cases [kappa (kappa) = 0.53; P < 0.001] and 47 out of 49 EFV cases (kappa = 0.91; P < 0.001).
The AI system successfully estimated LPV and EFV trough concentrations and achieved good agreement with expert committee TDM recommendations for EFV- and LPV-treated patients.
开发一种基于计算机的系统,用于对血浆抗逆转录病毒药物浓度进行建模和解释,以用于治疗药物监测(TDM)。
数据取自一项对199例HIV感染患者的前瞻性TDM研究(CCTG 578)。使用贝叶斯方法对洛匹那韦(LPV)和依非韦伦(EFV)的药代动力学(PK)参数进行建模,并由一个由HIV专家和药理学家组成的专家委员会进行解释,该委员会给出TDM建议。这些PK模型和建议构成了开发人工智能(AI)系统的知识库,该系统可以估计药物暴露情况、解释PK数据并生成TDM建议。将建模得到的PK暴露情况和专家委员会的TDM建议视为最佳结果,并用于验证AI系统获得的结果。
本分析纳入了一组患者,其中67例服用LPV,46例服用EFV,3例同时服用两种药物。AI估计值与建模值之间,LPV和EFV的估计谷浓度以及给药后4小时浓度的相关性很高(所有比较的r>0.79;P<0.0001)。虽然谷浓度相似,但EFV的平均预测4小时浓度(4.16μg/ml对3.89μg/ml;P=0.02)和LPV的平均预测4小时浓度(7.99μg/ml对8.79μg/ml;P<0.001)存在显著差异。在69例LPV病例中,AI和专家委员会的TDM建议有53例一致[kappa(κ)=0.53;P<0.001],在49例EFV病例中有47例一致(κ=0.91;P<0.001)。
AI系统成功估计了LPV和EFV的谷浓度,并且在EFV和LPV治疗的患者中,与专家委员会的TDM建议达成了良好的一致性。