Suppr超能文献

连续破遍历性

Continuously broken ergodicity.

作者信息

Mauro John C, Gupta Prabhat K, Loucks Roger J

机构信息

Science and Technology Division, Corning Incorporated, SP-TD-01-1, Corning, New York 14831, USA.

出版信息

J Chem Phys. 2007 May 14;126(18):184511. doi: 10.1063/1.2731774.

Abstract

A system that is initially ergodic can become nonergodic, i.e., display "broken ergodicity," if the relaxation time scale of the system becomes longer than the observation time over which properties are measured. The phenomenon of broken ergodicity is of vital importance to the study of many condensed matter systems. While previous modeling efforts have focused on systems with a sudden, discontinuous loss of ergodicity, they cannot be applied to study a gradual transition between ergodic and nonergodic behavior. This transition range, where the observation time scale is comparable to that of the structural relaxation process, is especially pertinent for the study of glass transition range behavior, as ergodicity breaking is an inherently continuous process for normal laboratory glass formation. In this paper, we present a general statistical mechanical framework for modeling systems with continuously broken ergodicity. Our approach enables the direct computation of entropy loss upon ergodicity breaking, accounting for actual transition rates between microstates and observation over a specified time interval. In contrast to previous modeling efforts for discontinuously broken ergodicity, we make no assumptions about phase space partitioning or confinement. We present a hierarchical master equation technique for implementing our approach and apply it to two simple one-dimensional landscapes. Finally, we demonstrate the compliance of our approach with the second and third laws of thermodynamics.

摘要

如果系统的弛豫时间尺度变得比测量性质的观测时间长,那么一个最初具有遍历性的系统可能会变得非遍历,即表现出“遍历性破缺”。遍历性破缺现象对于许多凝聚态系统的研究至关重要。虽然之前的建模工作主要集中在具有突然、不连续遍历性丧失的系统上,但它们不能用于研究遍历性和非遍历性行为之间的逐渐转变。这个转变范围,即观测时间尺度与结构弛豫过程的时间尺度相当,对于玻璃化转变范围行为的研究尤为相关,因为对于普通实验室玻璃的形成,遍历性破缺是一个固有的连续过程。在本文中,我们提出了一个用于对具有连续遍历性破缺的系统进行建模的通用统计力学框架。我们的方法能够直接计算遍历性破缺时的熵损失,考虑了微观状态之间的实际转变速率以及在指定时间间隔内的观测。与之前对不连续遍历性破缺的建模工作不同,我们不对相空间划分或限制做任何假设。我们提出了一种层次主方程技术来实现我们的方法,并将其应用于两个简单的一维景观。最后,我们证明了我们的方法符合热力学第二和第三定律。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验