Suppr超能文献

通往CRAC的漫长而艰辛之路。

The long and arduous road to CRAC.

作者信息

Vig Monika, Kinet Jean-Pierre

机构信息

Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.

出版信息

Cell Calcium. 2007 Aug;42(2):157-62. doi: 10.1016/j.ceca.2007.03.008. Epub 2007 May 22.

Abstract

Store-operated calcium (SOC) entry is the major route of calcium influx in non-excitable cells, especially immune cells. The best characterized store-operated current, I(CRAC), is carried by calcium release activated calcium (CRAC) channels. The existence of the phenomenon of store-operated calcium influx was proposed almost two decades ago. However, in spite of rigorous research by many laboratories, the identity of the key molecules participating in the process has remained a mystery. In all these years, multiple different approaches have been adopted by countless researchers to identify the molecular players in this fundamental process. Along the way, many crucial discoveries have been made, some of which have been summarized here. The last couple of years have seen significant breakthroughs in the field-identification of STIM1 as the store Ca(2+) sensor and CRACM1 (Orai1) as the pore-forming subunit of the CRAC channel. The field is now actively engaged in deciphering the gating mechanism of CRAC channels. We summarize here the latest progress in this direction.

摘要

储存性钙(SOC)内流是钙流入非兴奋性细胞(尤其是免疫细胞)的主要途径。特征最明确的储存性电流I(CRAC) 由钙释放激活钙(CRAC)通道传导。储存性钙内流现象的存在几乎是在二十年前被提出的。然而,尽管许多实验室进行了严谨的研究,但参与该过程的关键分子的身份仍然是个谜。这么多年来,无数研究人员采用了多种不同方法来确定这一基本过程中的分子参与者。在此过程中,取得了许多关键发现,其中一些已在此处进行了总结。过去几年该领域取得了重大突破——确定了STIM1作为储存Ca(2+) 传感器以及CRACM1(Orai1)作为CRAC通道的孔形成亚基。该领域目前正积极致力于破解CRAC通道的门控机制。我们在此总结该方向的最新进展。

相似文献

1
The long and arduous road to CRAC.
Cell Calcium. 2007 Aug;42(2):157-62. doi: 10.1016/j.ceca.2007.03.008. Epub 2007 May 22.
2
STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels.
Nat Cell Biol. 2006 Sep;8(9):1003-10. doi: 10.1038/ncb1454. Epub 2006 Aug 13.
3
Biochemical and functional properties of the store-operated Ca2+ channels.
Cell Signal. 2009 Apr;21(4):457-61. doi: 10.1016/j.cellsig.2008.11.005. Epub 2008 Nov 13.
4
Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation.
Circ Res. 2008 Nov 21;103(11):1289-99. doi: 10.1161/01.RES.0000338496.95579.56. Epub 2008 Oct 9.
5
New developments in the signaling mechanisms of the store-operated calcium entry pathway.
Pflugers Arch. 2008 Nov;457(2):405-15. doi: 10.1007/s00424-008-0533-2. Epub 2008 Jun 7.
7
Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion.
Adv Exp Med Biol. 2011;704:435-49. doi: 10.1007/978-94-007-0265-3_24.
9
CRAC channel activity in C. elegans is mediated by Orai1 and STIM1 homologues and is essential for ovulation and fertility.
J Physiol. 2007 Apr 1;580(Pt 1):67-85. doi: 10.1113/jphysiol.2006.124883. Epub 2007 Jan 11.
10
Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels.
J Biol Chem. 2008 May 9;283(19):12935-40. doi: 10.1074/jbc.C800008200. Epub 2008 Mar 7.

引用本文的文献

2
High affinity associations with α-SNAP enable calcium entry via Orai1 channels.
PLoS One. 2021 Oct 15;16(10):e0258670. doi: 10.1371/journal.pone.0258670. eCollection 2021.
4
Patient-Specific iPSC-Based Models of Huntington's Disease as a Tool to Study Store-Operated Calcium Entry Drug Targeting.
Front Pharmacol. 2018 Jun 29;9:696. doi: 10.3389/fphar.2018.00696. eCollection 2018.
5
STIM1, but not STIM2, Is the Calcium Sensor Critical for Sweat Secretion.
J Invest Dermatol. 2018 Mar;138(3):704-707. doi: 10.1016/j.jid.2017.09.038. Epub 2017 Oct 17.
7
Optogenetic toolkit for precise control of calcium signaling.
Cell Calcium. 2017 Jun;64:36-46. doi: 10.1016/j.ceca.2017.01.004. Epub 2017 Jan 16.
8
α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels.
Mol Biol Cell. 2016 Aug 15;27(16):2542-53. doi: 10.1091/mbc.E16-03-0163. Epub 2016 Jun 22.
9
The multifaceted role of PIP2 in leukocyte biology.
Cell Mol Life Sci. 2015 Dec;72(23):4461-74. doi: 10.1007/s00018-015-2013-0. Epub 2015 Aug 12.
10
Calcium signaling in lacrimal glands.
Cell Calcium. 2014 Jun;55(6):290-6. doi: 10.1016/j.ceca.2014.01.001. Epub 2014 Jan 22.

本文引用的文献

1
A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3693-7. doi: 10.1073/pnas.0611713104. Epub 2007 Feb 28.
3
Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16704-9. doi: 10.1073/pnas.0608358103. Epub 2006 Oct 30.
4
CRACM1 multimers form the ion-selective pore of the CRAC channel.
Curr Biol. 2006 Oct 24;16(20):2073-9. doi: 10.1016/j.cub.2006.08.085. Epub 2006 Sep 14.
6
Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai.
Nature. 2006 Sep 14;443(7108):226-9. doi: 10.1038/nature05108. Epub 2006 Aug 20.
7
Orai1 is an essential pore subunit of the CRAC channel.
Nature. 2006 Sep 14;443(7108):230-3. doi: 10.1038/nature05122. Epub 2006 Aug 20.
8
Graded regulation of the Kv2.1 potassium channel by variable phosphorylation.
Science. 2006 Aug 18;313(5789):976-9. doi: 10.1126/science.1124254.
9
STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels.
Nat Cell Biol. 2006 Sep;8(9):1003-10. doi: 10.1038/ncb1454. Epub 2006 Aug 13.
10
Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores.
J Biol Chem. 2006 Sep 22;281(38):28254-64. doi: 10.1074/jbc.M604272200. Epub 2006 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验