Harper Marina, Boyce John D, Cox Andrew D, St Michael Frank, Wilkie Ian W, Blackall P J, Adler Ben
Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria 3800, Australia.
Infect Immun. 2007 Aug;75(8):3885-93. doi: 10.1128/IAI.00212-07. Epub 2007 May 21.
Lipopolysaccharide (LPS) is a critical virulence determinant in Pasteurella multocida and a major antigen responsible for host protective immunity. In other mucosal pathogens, variation in LPS or lipooligosaccharide structure typically occurs in the outer core oligosaccharide regions due to phase variation. P. multocida elaborates a conserved oligosaccharide extension attached to two different, simultaneously expressed inner core structures, one containing a single phosphorylated 3-deoxy-D-manno-octulosonic acid (Kdo) residue and the other containing two Kdo residues. We demonstrate that two heptosyltransferases, HptA and HptB, add the first heptose molecule to the Kdo(1) residue and that each exclusively recognizes different acceptor molecules. HptA is specific for the glycoform containing a single, phosphorylated Kdo residue (glycoform A), while HptB is specific for the glycoform containing two Kdo residues (glycoform B). In addition, KdkA was identified as a Kdo kinase, required for phosphorylation of the first Kdo molecule. Importantly, virulence data obtained from infected chickens showed that while wild-type P. multocida expresses both LPS glycoforms in vivo, bacterial mutants that produced only glycoform B were fully virulent, demonstrating for the first time that expression of a single LPS form is sufficient for P. multocida survival in vivo. We conclude that the ability of P. multocida to elaborate alternative inner core LPS structures is due to the simultaneous expression of two different heptosyltransferases that add the first heptose residue to the nascent LPS molecule and to the expression of both a bifunctional Kdo transferase and a Kdo kinase, which results in the initial assembly of two inner core structures.
脂多糖(LPS)是多杀巴斯德菌的关键毒力决定因素,也是宿主保护性免疫的主要抗原。在其他黏膜病原体中,由于相变,LPS或脂寡糖结构的变异通常发生在外核心寡糖区域。多杀巴斯德菌产生一种保守的寡糖延伸结构,连接到两种不同的、同时表达的内核心结构上,一种含有单个磷酸化的3-脱氧-D-甘露糖辛酮酸(Kdo)残基,另一种含有两个Kdo残基。我们证明,两种庚糖基转移酶HptA和HptB将第一个庚糖分子添加到Kdo(1)残基上,并且每种酶都专门识别不同的受体分子。HptA对含有单个磷酸化Kdo残基的糖型(糖型A)具有特异性,而HptB对含有两个Kdo残基的糖型(糖型B)具有特异性。此外,KdkA被鉴定为Kdo激酶,是第一个Kdo分子磷酸化所必需的。重要的是,从感染鸡获得的毒力数据表明,虽然野生型多杀巴斯德菌在体内表达两种LPS糖型,但仅产生糖型B的细菌突变体具有完全毒力,首次证明单一LPS形式的表达足以使多杀巴斯德菌在体内存活。我们得出结论,多杀巴斯德菌产生替代内核心LPS结构的能力是由于同时表达两种不同的庚糖基转移酶,它们将第一个庚糖残基添加到新生的LPS分子上,以及由于双功能Kdo转移酶和Kdo激酶的表达,这导致了两种内核心结构的初始组装。