Gu Feng, Li Chunzhong, Wang Shufen
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
Inorg Chem. 2007 Jun 25;46(13):5343-8. doi: 10.1021/ic7004858. Epub 2007 May 25.
A facile solution-chemical method has been developed to be capable of encapsulating a multiwalled carbon nanotube (MWCNT) with ZnS nanocrystals without using any bridging species. The thickness of the ZnS shell can be tuned easily by controlling the experimental conditions. The optical properties of the MWCNT/ZnS heterostructures were investigated using UV-vis absorption and photoluminescence spectroscopy. The optical absorption spectrum indicates that the band gap of ZnS nanocrystallites is 4.2 eV. On the basis of the photoluminescence spectrum, charge transfer is thought to proceed from ZnS nanocrystals to the nanotube in the ZnS-carbon nanotube system. These special heterostructures are very easily encapsulated within a uniform silica layer by a modified-Stöber process and still show better stability even after heat treatment at 400 degrees C, which makes them appealing for practical applications in biochemistry and biodiagnostics.
已开发出一种简便的溶液化学方法,能够在不使用任何桥接物种的情况下用ZnS纳米晶体包裹多壁碳纳米管(MWCNT)。通过控制实验条件可以轻松调节ZnS壳层的厚度。使用紫外可见吸收光谱和光致发光光谱研究了MWCNT/ZnS异质结构的光学性质。光学吸收光谱表明ZnS纳米微晶的带隙为4.2 eV。基于光致发光光谱,认为在ZnS-碳纳米管系统中电荷从ZnS纳米晶体转移到纳米管。这些特殊的异质结构很容易通过改进的Stöber工艺封装在均匀的二氧化硅层中,即使在400℃热处理后仍表现出更好的稳定性,这使得它们在生物化学和生物诊断的实际应用中具有吸引力。