Suppr超能文献

酿酒酵母Msh6的N端是与增殖细胞核抗原(PCNA)相连的无结构链。

The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA.

作者信息

Shell Scarlet S, Putnam Christopher D, Kolodner Richard D

机构信息

Ludwig Institute for Cancer Research, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA.

出版信息

Mol Cell. 2007 May 25;26(4):565-78. doi: 10.1016/j.molcel.2007.04.024.

Abstract

The eukaryotic MutS homolog complexes, Msh2-Msh6 and Msh2-Msh3, recognize mismatched bases in DNA during mismatch repair (MMR). The eukaryote-specific N-terminal regions (NTRs) of Msh6 and Msh3 have not been characterized other than by demonstrating that they contain an N-terminal PCNA-interacting motif. Here we have demonstrated genetically that the NTR of Msh6 has an important role in MMR that is partially redundant with PCNA binding. Small-angle X-ray scattering (SAXS) was used to determine the solution structure of the complex of PCNA with Msh2-Msh6 and with the isolated Msh6 NTR, revealing that the Msh6 NTR is a natively disordered domain that forms an extended tether between Msh6 and PCNA. Moreover, computational analysis of PCNA-interacting motifs in the S. cerevisiae proteome indicated that flexible linkers are a common theme for PCNA-interacting proteins that may serve to localize these binding partners without tightly restraining them to the immediate vicinity of PCNA.

摘要

真核生物错配修复蛋白MutS同源复合物Msh2-Msh6和Msh2-Msh3在错配修复(MMR)过程中识别DNA中的错配碱基。除了证明Msh6和Msh3的真核生物特异性N端区域(NTR)含有一个N端PCNA相互作用基序外,它们尚未得到表征。在这里,我们通过遗传学方法证明,Msh6的NTR在MMR中具有重要作用,且该作用与PCNA结合存在部分冗余。小角X射线散射(SAXS)用于确定PCNA与Msh2-Msh6以及分离的Msh6 NTR形成的复合物的溶液结构,结果表明Msh6 NTR是一个天然无序结构域,它在Msh6和PCNA之间形成了一个延伸的连接链。此外,对酿酒酵母蛋白质组中PCNA相互作用基序的计算分析表明,柔性连接子是PCNA相互作用蛋白的一个共同特征,这可能有助于定位这些结合伴侣,而不会将它们紧密限制在PCNA的紧邻区域。

相似文献

1
The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA.
Mol Cell. 2007 May 25;26(4):565-78. doi: 10.1016/j.molcel.2007.04.024.
2
Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
J Biol Chem. 2000 Nov 24;275(47):36498-501. doi: 10.1074/jbc.C000513200.
4
Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA.
J Biol Chem. 2003 Jan 3;278(1):14-7. doi: 10.1074/jbc.C200627200. Epub 2002 Nov 14.
5
PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair.
Mol Cell. 2014 Jul 17;55(2):291-304. doi: 10.1016/j.molcel.2014.04.034. Epub 2014 Jun 26.
7
Mismatch Recognition by Msh2-Msh6: Role of Structure and Dynamics.
Int J Mol Sci. 2019 Aug 31;20(17):4271. doi: 10.3390/ijms20174271.
8
MSH-MLH complexes formed at a DNA mismatch are disrupted by the PCNA sliding clamp.
J Mol Biol. 2001 Mar 9;306(5):957-68. doi: 10.1006/jmbi.2001.4467.
9
The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
J Biol Chem. 2018 Nov 23;293(47):18055-18070. doi: 10.1074/jbc.RA118.005439. Epub 2018 Sep 20.
10
Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex.
J Biol Chem. 2014 Mar 28;289(13):9352-64. doi: 10.1074/jbc.M114.552190. Epub 2014 Feb 18.

引用本文的文献

1
The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts.
J Biol Chem. 2024 Jan;300(1):105588. doi: 10.1016/j.jbc.2023.105588. Epub 2023 Dec 21.
3
The unstructured linker of Mlh1 contains a motif required for endonuclease function which is mutated in cancers.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2212870119. doi: 10.1073/pnas.2212870119. Epub 2022 Oct 10.
4
Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair.
DNA Repair (Amst). 2022 Nov;119:103405. doi: 10.1016/j.dnarep.2022.103405. Epub 2022 Sep 14.
5
CRL4 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA.
Genes (Basel). 2022 Jan 29;13(2):266. doi: 10.3390/genes13020266.
6
7
Strand discrimination in DNA mismatch repair.
DNA Repair (Amst). 2021 Sep;105:103161. doi: 10.1016/j.dnarep.2021.103161. Epub 2021 Jun 19.
8
Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence.
Methods Mol Biol. 2020;2141:347-389. doi: 10.1007/978-1-0716-0524-0_18.
9
Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different.
J Mol Biol. 2020 Apr 17;432(9):2882-2889. doi: 10.1016/j.jmb.2020.01.031. Epub 2020 Feb 7.
10
Chromatin remodeling and mismatch repair: Access and excision.
DNA Repair (Amst). 2020 Jan;85:102733. doi: 10.1016/j.dnarep.2019.102733. Epub 2019 Oct 17.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
3
DNA mismatch repair: functions and mechanisms.
Chem Rev. 2006 Feb;106(2):302-23. doi: 10.1021/cr0404794.
4
Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA.
J Mol Biol. 2006 Jan 13;355(2):175-84. doi: 10.1016/j.jmb.2005.10.059. Epub 2005 Nov 8.
5
Human mismatch repair: reconstitution of a nick-directed bidirectional reaction.
J Biol Chem. 2005 Dec 2;280(48):39752-61. doi: 10.1074/jbc.M509701200. Epub 2005 Sep 27.
6
Reconstitution of 5'-directed human mismatch repair in a purified system.
Cell. 2005 Sep 9;122(5):693-705. doi: 10.1016/j.cell.2005.06.027.
7
Nh3D: a reference dataset of non-homologous protein structures.
BMC Struct Biol. 2005 Jul 12;5:12. doi: 10.1186/1472-6807-5-12.
8
Genetic instability induced by overexpression of DNA ligase I in budding yeast.
Genetics. 2005 Oct;171(2):427-41. doi: 10.1534/genetics.105.042861. Epub 2005 Jun 18.
9
Cellular DNA replicases: components and dynamics at the replication fork.
Annu Rev Biochem. 2005;74:283-315. doi: 10.1146/annurev.biochem.73.011303.073859.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验