Suppr超能文献

Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture.

作者信息

Ohnuki Toshihiko, Yoshida Takahiro, Ozaki Takuo, Kozai Naofumi, Sakamoto Fuminori, Nankawa Takuya, Suzuki Yoshinori, Francis Arokiasamy J

机构信息

Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.

出版信息

Environ Sci Technol. 2007 May 1;41(9):3134-9. doi: 10.1021/es061207g.

Abstract

We investigated the interactions of Pu(VI) with Bacillus subtilis, kaolinite clay, and a mixture of the two to determine and delineate the role of the microbes in regulating the environmental mobility of Pu. The bacteria, the kaolinite, and their mixture were exposed to a 4 x 10(-4) M Pu(VI) solution at pH 5.0. The amount of Pu sorbed by B. subtilis increased with time, but had not reached equilibrium in 48 h, whereas equilibrium was attained in kaolinite within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and the mixture had changed to Pu-(V), whereas the oxidation state of Pu associated with B. subtilis and the mixture was Pu(IV). Exudates released from B. subtilis reduced Pu(VI) to Pu(V). In contrast, there was no change in the oxidation state of Pu in the solution or on kaolinite after exposure to Pu(VI). Scanning electron microscopy-energy dispersive spectrometry analysis indicated that most of the Pu in the mixture was associated with B. subtilis. These results suggest that Pu-(IV) is preferably sorbed to bacterial cells in the mixture and that Pu(VI) is reduced to Pu(V) and Pu(IV).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验