Suppr超能文献

I类和II类赖氨酰-tRNA合成酶突变体以及甲烷八叠球菌属中吡咯赖氨酸的遗传编码

Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp.

作者信息

Mahapatra Anirban, Srinivasan Gayathri, Richter Kerstin B, Meyer Andrew, Lienard Tanja, Zhang Jun Kai, Zhao Gang, Kang Patrick T, Chan Michael, Gottschalk Gerhard, Metcalf William W, Krzycki Joseph A

机构信息

Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.

出版信息

Mol Microbiol. 2007 Jun;64(5):1306-18. doi: 10.1111/j.1365-2958.2007.05740.x.

Abstract

Methanosarcina spp. begin methanogenesis from methylamines with methyltransferases made via the translation of UAG as pyrrolysine. In vitro evidence indicates two possible routes to pyrrolysyl-tRNA(Pyl). PylS ligates pyrrolysine to tRNA(Pyl). Alternatively, class I and class II lysyl-tRNA synthetases (LysRS1 and LysRS2) together form lysyl-tRNA(Pyl), a potential intermediate to pyrrolysyl-tRNA(Pyl). The unusual possession of both LysRS1 and LysRS2 by Methanosarcina spp. may also reflect differences in catalytic properties. Here we assessed the in vivo relevance of these hypotheses. The lysK and mtmB transcripts, encoding LysRS1 and monomethylamine methyltransferase, were detectable in Methanosarcina barkeri during early log growth on trimethylamine, but not methanol. In contrast, lysS transcript encoding LysRS2 was detectable during log phase with either substrate. Methanosarcina acetivorans strains bearing deletions of lysK or lysS grew normally on methanol and methylamines with wild-type levels of monomethylamine methyltransferase and aminoacyl-tRNA(Pyl). The lysK and lysS genes could not replace pylS in a recombinant system employing tRNA(Pyl) for UAG suppression. The results support an association of LysRS1 with growth on methylamine, but not an essential role for LysRS1/LysRS2 in the genetic encoding of pyrrolysine. However, decreased lysyl-tRNA(Lys) in the lysS mutant provides a possible rationale for stable transfer of the bacterial lysS gene to methanoarchaea.

摘要

甲烷八叠球菌属利用通过将UAG翻译为吡咯赖氨酸而产生的甲基转移酶,从甲胺开始进行甲烷生成。体外证据表明了两条通往吡咯赖氨酰 - tRNA(Pyl)的可能途径。吡咯赖氨酰 - tRNA合成酶(PylS)将吡咯赖氨酸连接到tRNA(Pyl)上。另外,I类和II类赖氨酰 - tRNA合成酶(LysRS1和LysRS2)共同形成赖氨酰 - tRNA(Pyl),这是吡咯赖氨酰 - tRNA(Pyl)的潜在中间体。甲烷八叠球菌属同时拥有LysRS1和LysRS2这一不寻常的情况,也可能反映了催化特性的差异。在此,我们评估了这些假设在体内的相关性。在三甲胺上的对数生长早期,编码LysRS1和单甲胺甲基转移酶的lysK和mtmB转录本在巴氏甲烷八叠球菌中可检测到,但在甲醇上生长时则检测不到。相比之下,编码LysRS2的lysS转录本在使用任何一种底物的对数期均可检测到。携带lysK或lysS缺失的嗜乙酸甲烷八叠球菌菌株在甲醇和甲胺上正常生长,具有野生型水平的单甲胺甲基转移酶和氨酰 - tRNA(Pyl)。在使用tRNA(Pyl)进行UAG抑制的重组系统中,lysK和lysS基因无法替代pylS。结果支持LysRS1与甲胺生长相关,但LysRS1/LysRS2在吡咯赖氨酸的遗传编码中并非必不可少。然而,lysS突变体中赖氨酰 - tRNA(Lys)的减少为将细菌lysS基因稳定转移到甲烷古菌中提供了一个可能的理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验