Urushino Naoko, Nakabayashi Sachie, Arai Midori A, Kittaka Atsushi, Chen Tai C, Yamamoto Keiko, Hayashi Keiko, Kato Shigeaki, Ohta Miho, Kamakura Masaki, Ikushiro Shinichi, Sakaki Toshiyuki
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan.
Drug Metab Dispos. 2007 Sep;35(9):1482-8. doi: 10.1124/dmd.107.015602. Epub 2007 Jun 6.
Our previous study demonstrated that 25-hydroxy-19-nor-vitamin D(3) [25(OH)-19-nor-D(3)] inhibited the proliferation of immortalized noncancerous PZ-HPV-7 prostate cells similar to 1 alpha,25-dihydroxyvitamin D(3) [1 alpha,25(OH)(2)D(3)], suggesting that 25(OH)-19-nor-D(3) might be converted to 1 alpha,25-dihydroxy-19-nor-vitamin D(3) [1 alpha,25(OH)(2)-19-nor-D(3)] by CYP27B1 before exerting its antiproliferative activity. Using an in vitro cell-free model to study the kinetics of CYP27B1-dependent 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) and 25-hydroxyvitamin D(3) [25(OH)D(3)] and CYP24A1-dependent hydroxylation of 1 alpha,25(OH)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3), we found that k(cat)/K(m) for 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) was less than 0.1% of that for 25(OH)D(3), and the k(cat)/K(m) value for 24-hydroxylation was not significantly different between 1 alpha,25(OH)(2)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3). The data suggest a much slower formation and a similar rate of degradation of 1 alpha,25(OH)(2)-19-nor-D(3) compared with 1 alpha,25(OH)(2)D(3). We then analyzed the metabolites of 25(OH)D(3) and 25(OH)-19-nor-D(3) in PZ-HPV-7 cells by high-performance liquid chromatography. We found that a peak that comigrated with 1 alpha,25(OH)(2)D(3) was detected in cells incubated with 25(OH)D(3), whereas no 1 alpha,25(OH)(2)-19-nor-D(3) was detected in cells incubated with 25(OH)-19-nor-D(3). Thus, the present results do not support our previous hypothesis that 25(OH)-19-nor-D(3) is converted to 1 alpha,25(OH)(2)-19-nor-D(3) by CYP27B1 in prostate cells to inhibit cell proliferation. We hypothesize that 25(OH)-19-nor-D(3) by itself may have a novel mechanism to activate vitamin D receptor or it is metabolized in prostate cells to an unknown metabolite with antiproliferative activity without 1 alpha-hydroxylation. Thus, the results suggest that 25(OH)-19-nor-D(3) has potential as an attractive agent for prostate cancer therapy.
我们之前的研究表明,25-羟基-19-去甲维生素D(3)[25(OH)-19-nor-D(3)]抑制永生化非癌性PZ-HPV-7前列腺细胞的增殖,其作用类似于1α,25-二羟基维生素D(3)[1α,25(OH)₂D(3)],这表明25(OH)-19-nor-D(3)在发挥其抗增殖活性之前可能被CYP27B1转化为1α,25-二羟基-19-去甲维生素D(3)[1α,25(OH)₂-19-nor-D(3)]。利用体外无细胞模型研究CYP27B1依赖性的25(OH)-19-nor-D(3)和25-羟基维生素D(3)[25(OH)D(3)]的1α-羟化动力学以及CYP24A1依赖性的1α,25(OH)₂-19-nor-D(3)和1α,25(OH)₂D(3)的羟化动力学,我们发现25(OH)-19-nor-D(3)的1α-羟化的k(cat)/K(m)小于25(OH)D(3)的1α-羟化的k(cat)/K(m)的0.1%,并且1α,25(OH)₂-19-nor-D(3)和1α,25(OH)₂D(3)的24-羟化的k(cat)/K(m)值没有显著差异。数据表明,与1α,25(OH)₂D(3)相比,1α,25(OH)₂-19-nor-D(3)的形成要慢得多,降解速率相似。然后,我们通过高效液相色谱分析了PZ-HPV-7细胞中25(OH)D(3)和25(OH)-19-nor-D(3)的代谢产物。我们发现,在用25(OH)D(3)孵育的细胞中检测到一个与1α,25(OH)₂D(3)共迁移的峰,而在用25(OH)-19-nor-D(3)孵育的细胞中未检测到1α,25(OH)₂-19-nor-D(3)。因此,目前的结果不支持我们之前的假设,即25(OH)-19-nor-D(3)在前列腺细胞中被CYP27B1转化为1α,25(OH)₂-19-nor-D(3)以抑制细胞增殖。我们假设25(OH)-19-nor-D(3)本身可能有一种激活维生素D受体的新机制,或者它在前列腺细胞中被代谢为一种具有抗增殖活性的未知代谢产物而无需1α-羟化。因此,结果表明25(OH)-19-nor-D(3)有潜力成为一种有吸引力的前列腺癌治疗药物。