Punchard M A, Stenson-Cox C, O'cearbhaill E D, Lyons E, Gundy S, Murphy L, Pandit A, McHugh P E, Barron V
National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
J Biomech. 2007;40(14):3146-54. doi: 10.1016/j.jbiomech.2007.03.029. Epub 2007 Jun 11.
In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.
在体内,内皮细胞(EC)持续暴露于压力、壁面剪应力和环向应力等血流动力学力(HF)。本研究的主要目的是设计、创建并验证一种新型灌注生物反应器,该反应器能够在体外向EC施加剪应力和血管内压力,并对其形态、取向和基因表达进行表征。在此,我们报告了这种模拟器的创建和验证,以及将压力(120/60 mmHg)和低剪应力(5 dyn/cm²)双重施加于在非顺应性硅胶管上建立的EC单层的情况。在这些条件下,EC以时间依赖性方式沿施加的剪应力方向倾斜伸长并重新排列。此外,随机分布的F-肌动蛋白微丝重新组织成沿垂直于流动方向穿过细胞的长而密集的应力纤维。最后,对EC进行组合生物力学调节可诱导炎症相关的E-选择素基因的表达。