Suppr超能文献

组织工程化动脉中胶原蛋白的超微结构分析

An ultrastructural analysis of collagen in tissue engineered arteries.

作者信息

Dahl Shannon L M, Vaughn Megann E, Niklason Laura E

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Ann Biomed Eng. 2007 Oct;35(10):1749-55. doi: 10.1007/s10439-007-9340-8. Epub 2007 Jun 14.

Abstract

Collagen is the structural molecule that is most correlated with strength in blood vessels. In this study, we compared the properties of collagen in engineered and native blood vessels. Transmission electron microscopy (TEM) was used to image sections of engineered and native arteries. Band periodicities of engineered and native collagen fibrils indicated that spacing between collagen molecules was similar in engineered and native tissues. Engineered arteries, however, had thinner collagen fibrils and fibers than native arteries. Further, collagen fibrils were more loosely packed within collagen fibers in engineered arteries than in native arteries. The sensitivity of TEM analysis allowed measurement of the relative frequency of observation for alignment of collagen. These observations showed that collagen in both engineered and native arteries was aligned circumferentially, helically, and axially, but that engineered arteries had less circumferential collagen and more axial collagen than native arteries. Given that collagen is primarily responsible for dictating the ultimate mechanical properties of arterial tissue, future efforts should focus on using relative frequency of observation for alignment of collagen as a descriptive input for models of the mechanical properties of engineered or native tissues.

摘要

胶原蛋白是与血管强度最相关的结构分子。在本研究中,我们比较了工程化血管和天然血管中胶原蛋白的特性。采用透射电子显微镜(TEM)对工程化动脉和天然动脉的切片进行成像。工程化和天然胶原纤维的条带周期表明,工程化组织和天然组织中胶原分子之间的间距相似。然而,工程化动脉的胶原纤维和纤维比天然动脉更细。此外,与天然动脉相比,工程化动脉中胶原纤维在胶原纤维内的排列更松散。TEM分析的敏感性使得能够测量胶原排列的相对观察频率。这些观察结果表明,工程化动脉和天然动脉中的胶原蛋白均呈周向、螺旋状和轴向排列,但工程化动脉的周向胶原蛋白比天然动脉少,轴向胶原蛋白比天然动脉多。鉴于胶原蛋白主要决定动脉组织的最终力学性能,未来的研究应致力于将胶原排列的相对观察频率作为工程化或天然组织力学性能模型的描述性输入。

相似文献

1
An ultrastructural analysis of collagen in tissue engineered arteries.
Ann Biomed Eng. 2007 Oct;35(10):1749-55. doi: 10.1007/s10439-007-9340-8. Epub 2007 Jun 14.
2
Tissue-engineered valves with commissural alignment.
Tissue Eng. 2006 Apr;12(4):891-903. doi: 10.1089/ten.2006.12.891.
3
5
Mechanical properties and compositions of tissue engineered and native arteries.
Ann Biomed Eng. 2007 Mar;35(3):348-55. doi: 10.1007/s10439-006-9226-1. Epub 2007 Jan 6.
6
Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
Biomaterials. 2007 Feb;28(6):1115-22. doi: 10.1016/j.biomaterials.2006.10.025. Epub 2006 Nov 16.
7
Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring.
J Biomech. 2015 Jun 1;48(8):1436-43. doi: 10.1016/j.jbiomech.2015.02.033. Epub 2015 Feb 26.
8
Effects of copper and cross-linking on the extracellular matrix of tissue-engineered arteries.
Cell Transplant. 2005;14(6):367-74. doi: 10.3727/000000005783982936.
10
Improved prediction of the collagen fiber architecture in the aortic heart valve.
J Biomech Eng. 2005 Apr;127(2):329-36. doi: 10.1115/1.1865187.

引用本文的文献

1
Multidirectional alignment of collagen fibers to guide cell orientation in 3D-printed tissue.
bioRxiv. 2025 May 25:2025.05.20.654730. doi: 10.1101/2025.05.20.654730.
2
The Future of Microsurgery: Vascularized Composite Allotransplantation and Engineering Vascularized Tissue.
J Hand Microsurg. 2024 Apr 16;16(1):100011. doi: 10.1055/s-0042-1757182. eCollection 2024 Mar.
5
Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration.
Polymers (Basel). 2019 Jul 5;11(7):1151. doi: 10.3390/polym11071151.
6
Disruptive technological advances in vascular access for dialysis: an overview.
Pediatr Nephrol. 2018 Dec;33(12):2221-2226. doi: 10.1007/s00467-017-3853-7. Epub 2017 Nov 29.
7
Vascular Mechanobiology: Towards Control of In Situ Regeneration.
Cells. 2017 Jul 3;6(3):19. doi: 10.3390/cells6030019.
8
9
Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.
J Biomech Eng. 2016 Jun;138(6):061003. doi: 10.1115/1.4033300.
10
The evolution of collagen fiber orientation in engineered cardiovascular tissues visualized by diffusion tensor imaging.
PLoS One. 2015 May 27;10(5):e0127847. doi: 10.1371/journal.pone.0127847. eCollection 2015.

本文引用的文献

1
Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon.
J Biol Chem. 2006 Dec 15;281(50):38592-8. doi: 10.1074/jbc.M607581200. Epub 2006 Oct 3.
3
Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures.
J Biomech. 2006;39(10):1819-31. doi: 10.1016/j.jbiomech.2005.05.020. Epub 2005 Jul 25.
5
Matrix loading: assembly of extracellular matrix collagen fibrils during embryogenesis.
Birth Defects Res C Embryo Today. 2004 Mar;72(1):1-11. doi: 10.1002/bdrc.20002.
6
Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel.
Tissue Eng. 2003 Aug;9(4):579-86. doi: 10.1089/107632703768247287.
7
Remodelling of continuously distributed collagen fibres in soft connective tissues.
J Biomech. 2003 Aug;36(8):1151-8. doi: 10.1016/s0021-9290(03)00082-4.
9
Tissue engineering of heart valves: formation of a three-dimensional tissue using porcine heart valve cells.
ASAIO J. 2002 Nov-Dec;48(6):586-91. doi: 10.1097/00002480-200211000-00003.
10
Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent.
J Biomed Mater Res. 2002 Jun 15;60(4):607-12. doi: 10.1002/jbm.10107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验