Suppr超能文献

非负二次规划的乘法更新

Multiplicative updates for nonnegative quadratic programming.

作者信息

Sha Fei, Lin Yuanqing, Saul Lawrence K, Lee Daniel D

机构信息

Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Neural Comput. 2007 Aug;19(8):2004-31. doi: 10.1162/neco.2007.19.8.2004.

Abstract

Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.

摘要

神经计算和统计学习中的许多问题都涉及到带有非负约束的优化。在本文中,我们研究二次规划中的凸问题,其中优化被限制在非负象限中的一个轴对齐区域内。对于这些问题,我们推导了乘法更新,该更新在每次迭代时都会提高目标函数的值,并单调收敛到全局最小值。这些更新具有简单的封闭形式,不涉及任何必须调整以确保收敛的启发式方法或自由参数。尽管它们很简单,但在形式上与机器学习中使用的其他乘法更新有显著不同。我们为这些更新提供了完整的收敛证明,并描述了它们在信号处理和模式识别问题中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验