Suppr超能文献

人尿苷二磷酸葡萄糖醛酸基转移酶:核苷酸糖结合位点关键残基的鉴定

The human UDP-glucuronosyltransferase: identification of key residues within the nucleotide-sugar binding site.

作者信息

Patana Anne-Sisko, Kurkela Mika, Goldman Adrian, Finel Moshe

机构信息

Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland.

出版信息

Mol Pharmacol. 2007 Sep;72(3):604-11. doi: 10.1124/mol.107.036871. Epub 2007 Jun 19.

Abstract

UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism, detoxification,and clearance of many different xenobiotics, including drugs and endogenous compounds. Structural information about these membrane-bound enzymes of the endoplasmic reticulum is limited. We do not know the identity or the location of the key residues for catalysis and binding of the aglycone substrate and the cosubstrate UDP-glucuronic acid (UDPGA). One suggestion was that His371 (UGT1A6 numbering) is the "catalytic base" that deprotonates the phenol group. We have now re-examined this hypothesis by analyzing the activities of the corresponding mutants, 6H371A (in UGT1A6) and the 9H369A (in UGT1A9). The K(m) values of mutant 6H371A for scopoletin and UDPGA were higher by 4- and 11-fold, respectively, than in UGT1A6. The K(d) for the enzyme-UDPGA complex, derived from bisubstrate kinetics, was about 9-fold higher in 6H371A than in UGT1A6, indicating severely impaired cosubstrate binding by the mutant. The effect of mutation on V(max) was large in UGT1A6 but variable in UGT1A9, suggesting that His371 does not play the catalytic role previously hypothesized. In both UGTs, the E379A mutation (UGT1A6 numbering) had an effect similar to that of the H371A mutations. A homology model of the putative UDPGA binding region of UGT1A6 was built using distant homologous protein structures from the "GT1 class." The combined results of activity determinations, kinetic analyses, and modeling strongly suggest that His371 and Glu379 are directly involved in UDPGA binding but are not the general acid or general base.

摘要

尿苷二磷酸葡萄糖醛酸转移酶(UGTs)在多种不同外源性物质(包括药物和内源性化合物)的代谢、解毒及清除过程中发挥着重要作用。关于这些内质网的膜结合酶的结构信息有限。我们尚不清楚催化和结合苷元底物及共底物尿苷二磷酸葡萄糖醛酸(UDPGA)的关键残基的身份和位置。一种观点认为,His371(以UGT1A6的编号为准)是使酚基团去质子化的“催化碱基”。我们现在通过分析相应突变体6H371A(在UGT1A6中)和9H369A(在UGT1A9中)的活性,重新审视了这一假说。突变体6H371A对东莨菪亭和UDPGA的K(m)值分别比UGT1A6高4倍和11倍。由双底物动力学得出的酶 - UDPGA复合物的K(d)值,在6H371A中比在UGT1A6中高约9倍,表明该突变体对共底物的结合严重受损。突变对V(max)的影响在UGT1A6中较大,但在UGT1A9中变化不定,这表明His371并不发挥先前假设的催化作用。在这两种UGT中,E379A突变(以UGT1A6的编号为准)产生了与H371A突变类似的效果。利用来自“GT1类”远源同源蛋白质结构构建了UGT1A6假定的UDPGA结合区域的同源模型。活性测定、动力学分析和建模的综合结果强烈表明,His371和Glu379直接参与UDPGA的结合,但并非一般酸或一般碱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验