Suppr超能文献

Reliability-based rearrangement of ECG automated interpretation chain.

作者信息

Augustyniak Piotr

机构信息

AGH University of Science and Technology, Krakow, Poland.

出版信息

Anadolu Kardiyol Derg. 2007 Jul;7 Suppl 1:148-52.

Abstract

OBJECTIVE

Sequences of electrocardiogram (ECG) interpretation procedures from various manufacturers of ECG-dedicated software were studied in aspect of data flow and reliability of intermediate results. The results motivated us to design a new system architecture considering error propagation issues on subsequent stages of ECG processing and reducing the data stream on initial stages.

METHODS

The proposed architecture has network topology and consists of the procedures interconnected by data buses. Each node and isolated sub-networks were tested against the MIT-BIH, CSE standard databases and described by the incorrect result probability and data reduction efficiency. The optimized solution considers also the probability of the procedure use and probability of useless outcome. Best performing network was selected and compared to the original sequential interpretation chain.

RESULTS

The optimized architecture moves reduction-effective functions to the front of the processing chain, reduces the cumulative error propagation by parallel use of multiple short processing chains and reduces the interpretation processing time and the required computational power. Depending on interpretation domain, the reduction of outcome relative inaccuracy was up to 87% (from 2.8% to 1.5%) for pacemaker pulse detection or 70% (from 6.3% to 3.7%) for wave axes determination.

CONCLUSION

Significant improvements in automated ECG interpretation were achieved by rearrangement of processing chain only, without any change in processing methods. Reduction of the data stream at early processing stages is particularly advantageous in wireless interpretation system, since task sharing involves minimum exploitation costs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验