Wickham Jason R, Mason Rachel N, Rice Charles V
Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA.
Solid State Nucl Magn Reson. 2007 Jul;31(4):184-92. doi: 10.1016/j.ssnmr.2007.05.001. Epub 2007 May 13.
Solid polymer electrolytes (SPEs) contain amorphous and crystalline regions, each of which have unique contributions to the (13)C NMR spectrum. Understanding and assigning the (13)C NMR signals are vital to interpreting the NMR data collected for each phase. The (13)C CPMAS solid-state NMR spectrum of poly(ethylene oxide), a common polymer electrolyte host material, has superimposed broad and narrow components. Previously, the narrow component has been assigned to the amorphous region and the broad component to the crystalline PEO fraction. These assignments for pure PEO have been applied to various PEO:salt systems. Using lithium triflate salt dissolved in PEO, we revisit the spectral assignments and discover that the narrow component is due to crystalline PEO:LiTf component, which is reversed from the previous pure PEO assignment. This paradigm shift is based on data collected from a 100% crystalline PEO:LiTf with a 3:1 oxygen:lithium ratio sample, which exhibited only the narrow peak. For dilute electrolytes, such as 20:1 PEO:LiTf, the (13)C CPMAS spectra contain the narrow peak superimposed on a broad peak as seen with pure PEO. As dilute electrolytes are heterogeneous with crystalline and amorphous regions of both pure PEO and PEO:LiTf complex, peak assignments for pure PEO and PEO:LiTf are important. Thus, we reexamine the previous assignment for pure PEO using samples of pure powdered PEO, thermally treated pure powdered PEO, and a thin film PEO cast from an acetonitrile solution. With these different samples, we observed the growth of the narrow peak under conditions that favor crystallization. Therefore, for pure PEO, we have reassigned the narrow peak to the crystalline region and the broad peak to the amorphous region. In light of our observations, previous NMR studies of pure PEO and PEO SPEs should be reinvestigated. We also use rotational echo double resonance (REDOR) to study the 20:1 PEO:LiTf created from 2 and 100 kDa PEO. We find that the lithium environment is similar in the respective microcrystalline domains. However, the 100 kDa samples have a larger fraction of pure crystalline PEO.
固体聚合物电解质(SPEs)包含非晶区和结晶区,每个区域对碳-13核磁共振(¹³C NMR)谱都有独特的贡献。理解和归属¹³C NMR信号对于解释为每个相收集的NMR数据至关重要。聚环氧乙烷(一种常见的聚合物电解质主体材料)的¹³C交叉极化魔角旋转(CPMAS)固态NMR谱有叠加的宽峰和窄峰成分。此前,窄峰成分被归属于非晶区,宽峰成分被归属于结晶态聚环氧乙烷(PEO)部分。这些针对纯PEO的归属已应用于各种PEO:盐体系。使用溶解在PEO中的三氟甲磺酸锂盐,我们重新审视了光谱归属,发现窄峰成分是由于结晶态PEO:LiTf成分,这与之前纯PEO的归属相反。这种范式转变基于从氧:锂比例为3:1的100%结晶态PEO:LiTf样品收集的数据,该样品仅显示窄峰。对于稀电解质,如20:1的PEO:LiTf,¹³C CPMAS谱包含叠加在宽峰上的窄峰,就像在纯PEO中看到的那样。由于稀电解质具有纯PEO和PEO:LiTf络合物的结晶区和非晶区这样的不均匀性,对纯PEO和PEO:LiTf的峰归属很重要。因此,我们使用纯粉末状PEO样品、热处理后的纯粉末状PEO以及由乙腈溶液浇铸的PEO薄膜,重新审视了之前对纯PEO的归属。对于这些不同的样品,我们观察到在有利于结晶的条件下窄峰的增长。因此,对于纯PEO,我们将窄峰重新归属于结晶区,宽峰归属于非晶区。鉴于我们的观察结果,之前对纯PEO和PEO SPEs的NMR研究应该重新进行调查。我们还使用旋转回波双共振(REDOR)来研究由2 kDa和100 kDa PEO制成的20:1 PEO:LiTf。我们发现锂环境在各自的微晶域中相似。然而,100 kDa的样品中纯结晶态PEO的比例更大。