Suppr超能文献

发作间期脑电图癫痫记录中静止节段的检测

Detection of stationary segments in interictal electroencephalographic epileptic recordings.

作者信息

Lazăr Anca Mihaela, Ursulean R

机构信息

School of Bioengineering, "Gr. T. Popa" University of Medicine and Pharmacy, Iaşi.

出版信息

Rev Med Chir Soc Med Nat Iasi. 2007 Jan-Mar;111(1):307-12.

Abstract

The electroencephalographic (EEG) recording is frequently used to acquire both ictal and interictal epileptiform abnormalities. The objective of this paper is to detect the stationary parts of the interictal EEG signals. This is achieved by means of a lattice filter based on an optimal orthogonal linear prediction algorithm. It calculates recursively a set of reflection coefficients and a likelihood ratio test built on them is applied by means of a threshold linked to its statistical properties. The method is applied on three types of interictal recordings: signals with single spikes, sequences of spikes and signals with spikes and slow waves with comparable amplitudes. The best results were pointed out for the first and the last types. When dealing with spike-sequences, the algorithm reached its lowest rate of success. The proposed method permits an adequate segmentation and therefore facilitates the automatic interpretation of EEG before epileptic seizures.

摘要

脑电图(EEG)记录常用于获取发作期和发作间期的癫痫样异常。本文的目的是检测发作间期EEG信号的平稳部分。这是通过基于最优正交线性预测算法的格型滤波器来实现的。它递归地计算一组反射系数,并基于这些系数通过与统计特性相关的阈值进行似然比检验。该方法应用于三种类型的发作间期记录:单峰信号、峰序列信号以及峰与慢波幅度相当的信号。对于第一种和最后一种类型,指出了最佳结果。在处理峰序列时,该算法的成功率最低。所提出的方法允许进行适当的分割,因此有助于癫痫发作前EEG的自动解读。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验