Jelks Karen Bozak, Wylie Rebecca, Floyd Candace L, McAllister A Kimberly, Wise Phyllis
Department of Neurobiology, Physiology, and Behavior, University of California-Davis, Davis, California 95616-8536, USA.
J Neurosci. 2007 Jun 27;27(26):6903-13. doi: 10.1523/JNEUROSCI.0909-07.2007.
Estradiol mediates structural changes at synapses of the hippocampus, an area in the brain important for learning and memory. This study was designed to test the hypothesis that estradiol mediates subcellular changes of synaptic proteins to induce new synapses via an estrogen receptor (ER)-mediated process. To elucidate the mechanisms involved in glutamatergic synapse formation, we investigated effects of estradiol on synaptic proteins in cultured hippocampal neurons using immunocytochemistry and confocal microscopy. Synaptic protein distribution and size were identified with antibodies to the presynaptic vesicular glutamate transporter protein (vGlut1) and postsynaptic NMDA receptor (NR1 subunit). We observed an increase in synapse density, as detected by NR1 and vGlut1 colocalization, along dendrites of neurons cultured in steroid-stripped media and exposed to estradiol (10 nM) for 48 h. Additionally, the NR1 subunit was enriched at synaptic clusters. Immunocytochemistry and confocal imaging revealed punctate staining of extranuclear ERs along dendrites of hippocampal neurons expressing NR1. Estradiol increased the density of both ER-alpha and ER-beta protein clusters along dendrites. To test whether ERs play an important functional role in the estradiol-induced synaptogenesis, we used the ER antagonist [7alpha,17beta-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI 182,780)] and the ER-alpha- and ER-beta-specific agonists [1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) and 2,3-bis(4-hydroxyphenyl) propionitrile (DPN), respectively]. ICI 182,780 blocked the increase in synapse density. Treatment with PPT, but not DPN, induced significant increases in synapse density that mimicked treatment with estradiol. Together, our results demonstrate that estradiol stimulates glutamatergic synapse formation in the developing hippocampus through an ER-alpha-dependent mechanism. These findings carry profound implications regarding the potential of estrogen to influence learning, memory, and possibly hormone-modulated neurodegeneration.
雌二醇介导海马体突触的结构变化,海马体是大脑中对学习和记忆很重要的区域。本研究旨在验证以下假说:雌二醇通过雌激素受体(ER)介导的过程,介导突触蛋白的亚细胞变化以诱导新突触形成。为阐明谷氨酸能突触形成所涉及的机制,我们使用免疫细胞化学和共聚焦显微镜研究了雌二醇对培养的海马神经元中突触蛋白的影响。用针对突触前囊泡谷氨酸转运蛋白(vGlut1)和突触后NMDA受体(NR1亚基)的抗体来鉴定突触蛋白的分布和大小。我们观察到,在去除类固醇的培养基中培养并暴露于雌二醇(10 nM)48小时的神经元树突上,通过NR1和vGlut1共定位检测到突触密度增加。此外,NR1亚基在突触簇中富集。免疫细胞化学和共聚焦成像显示,在表达NR1的海马神经元树突上,核外ER呈点状染色。雌二醇增加了树突上ER-α和ER-β蛋白簇的密度。为测试ERs在雌二醇诱导的突触形成中是否发挥重要功能作用,我们使用了ER拮抗剂[7α,17β-[9[(4,4,5,5,5-五氟戊基)亚磺酰基]壬基]雌-1,3,5(10)-三烯-3,17-二醇(ICI 182,780)]以及ER-α和ER-β特异性激动剂[分别为1,3,5-三(4-羟苯基)-4-丙基-1H-吡唑(PPT)和2,3-双(4-羟苯基)丙腈(DPN)]。ICI 182,780阻断了突触密度的增加。用PPT而非DPN处理可诱导突触密度显著增加,其效果与用雌二醇处理相似。总之,我们的结果表明,雌二醇通过依赖ER-α的机制刺激发育中的海马体中谷氨酸能突触的形成。这些发现对于雌激素影响学习、记忆以及可能的激素调节的神经退行性变的潜力具有深远意义。