Korostynski Michal, Piechota Marcin, Kaminska Dorota, Solecki Wojciech, Przewlocki Ryszard
Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Smetna 12, 31-343, Krakow, Poland.
Genome Biol. 2007;8(6):R128. doi: 10.1186/gb-2007-8-6-r128.
Chronic opiate use produces molecular and cellular adaptations in the nervous system that lead to tolerance, physical dependence, and addiction. Genome-wide comparison of morphine-induced changes in brain transcription of mouse strains with different opioid-related phenotypes provides an opportunity to discover the relationship between gene expression and behavioral response to the drug.
Here, we analyzed the effects of single and repeated morphine administrations in selected inbred mouse strains (129P3/J, DBA/2J, C57BL/6J, and SWR/J). Using microarray-based gene expression profiling in striatum, we found 618 (false discovery rate < 1%) morphine-responsive transcripts. Through ontologic classification, we linked particular sets of genes to biologic functions, including metabolism, transmission of nerve impulse, and cell-cell signaling. We identified numerous novel morphine-regulated genes (for instance, Olig2 and Camk1g), and a number of transcripts with strain-specific changes in expression (for instance, Hspa1a and Fzd2). Moreover, transcriptional activation of a pattern of co-expressed genes (for instance, Tsc22d3 and Nfkbia) was identified as being mediated via the glucocorticoid receptor (GR). Further studies revealed that blockade of the GR altered morphine-induced locomotor activity and development of physical dependence.
Our results indicate that there are differences between strains in the magnitude of transcriptional response to acute morphine treatment and in the degree of tolerance in gene expression observed after chronic morphine treatment. Using whole-genome transcriptional analysis of morphine effects in the striatum, we were able to reveal multiple physiological factors that may influence opioid-related phenotypes and to relate particular gene networks to this complex trait. The results also suggest the possible involvement of GR-regulated genes in mediating behavioral response to morphine.
长期使用阿片类药物会在神经系统中产生分子和细胞适应性变化,从而导致耐受性、身体依赖性和成瘾性。对具有不同阿片类药物相关表型的小鼠品系进行全基因组范围内吗啡诱导的大脑转录变化比较,为发现基因表达与药物行为反应之间的关系提供了机会。
在此,我们分析了单次和重复给予吗啡对选定近交系小鼠品系(129P3/J、DBA/2J、C57BL/6J和SWR/J)的影响。通过基于微阵列的纹状体基因表达谱分析,我们发现了618个(错误发现率<1%)吗啡反应性转录本。通过本体分类,我们将特定的基因集与生物学功能联系起来,包括代谢、神经冲动传递和细胞间信号传导。我们鉴定出许多新的吗啡调节基因(例如,Olig2和Camk1g),以及一些在表达上具有品系特异性变化的转录本(例如,Hspa1a和Fzd2)。此外,共表达基因模式(例如,Tsc22d3和Nfkbia)的转录激活被确定为由糖皮质激素受体(GR)介导。进一步的研究表明,GR的阻断改变了吗啡诱导的运动活性和身体依赖性的发展。
我们的结果表明,不同品系在对急性吗啡治疗的转录反应程度以及慢性吗啡治疗后观察到的基因表达耐受性程度上存在差异。通过对纹状体中吗啡作用的全基因组转录分析,我们能够揭示多个可能影响阿片类药物相关表型的生理因素,并将特定的基因网络与这一复杂性状联系起来。结果还表明GR调节的基因可能参与介导对吗啡的行为反应。