Chopra R K, Anastassiades T P, Lohnes D, Jones G
Department of Medicine, Queen's University, Kingston, Ont., Canada.
Biochem Cell Biol. 1991 Aug;69(8):523-30. doi: 10.1139/o91-077.
Following incubation of UMR-106 cells for 48 h in the presence of [3H]glucosamine and [35S]sulfate, the newly synthesized anionic glycoconjugates were isolated from the culture medium by cetylpyridinium chloride/ethanol precipitation and further separated by DEAE-Sephacel chromatography into two radiolabelled fractions, a major component, UM I, and a minor component, UM II. UM I appeared to be homogeneous as shown by Sepharose CL-4B chromatography under dissociative conditions, and SDS-polyacrylamide gel electrophoresis. It showed a molecular mass of approximately 93 kDa on 4-15% gels. UM I was partially degraded by brief treatment with trypsin, releasing a small, terminal peptide that contained 47.6% of 35S but no 3H. Treatment of UM I with neuraminidase and 0.1 N H2SO4 (1 h at 80 degrees C), respectively, released 27% 3H and 38.4% 3H plus 41% 35S, suggesting the presence of a significant number of sialic acid residues, as shown by Sephadex G-50 chromatography of the digests. Amino acid analysis showed that the UM I glycoconjugate was rich in acidic amino acids (12.6% aspartic acid and 21.2% glutamic acid residues) and its N-terminal sequence was Phe-Ser-Met-Lys-Asn-Phe-, which is identical to the published N-terminal amino acid sequence of rat bone sialoprotein II. Keratanase treatment of UM I released 26% of the incorporated radioactivity, suggesting the presence of keratan sulfate chains. UM II contained a chondroitinase ABC-sensitive proteoglycan.