Chan Allen W, Owens Steven, Tung Connie, Stanley Elise F
Genetics and Development Division, Toronto Western Research Institute, UHN, Canada.
Cell Calcium. 2007 Oct-Nov;42(4-5):419-25. doi: 10.1016/j.ceca.2007.04.009. Epub 2007 Jun 28.
Presynaptic CaV2.2 (N type) calcium channels gate the influx of calcium ions to trigger transmitter release. We have previously demonstrated at the chick ciliary ganglion presynaptic calyx terminal that the bulk of these channels are highly resistant to voltage dependent inactivation [E.F. Stanley, G. Goping, Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal, J. Neurosci. 11 (1991) 985-993; E.F. Stanley, Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1, Eur. J. Neurosci. 17 (2003) 1303-1305; E.F. Stanley, R.R. Mirotznik, Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels, Nature (Lond.) 385 (1997) 340-343]. Recent studies have suggested that CaV2.2 can be rendered inactivation resistant when expressed with the palmitoylated beta2A subunit and that this effect can be eliminated by tunicamycin, a general inhibitor of dynamic palmitoylation [J.H. Hurley, A.L. Cahill, K.P. Currie, A.P. Fox, The role of dynamic palmitoylation in Ca(2+) channel inactivation, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 9293-9298]. We find that while tunicamycin treatment had no effect on CaV2.2 current in the inactivation-sensitive isolated chick dorsal root ganglion (DRG) neuron, it caused a 10mV hyperpolarized shift in the profile of the inactivation-resistant presynaptic CaV2.2 population. This shift occurred without any effect on the voltage sensitivity of the inactivation process, as measured by a Boltzmann slope factor. Our findings suggest that dynamic palmitoylation contributes to the hyperpolarized steady inactivation profile of presynaptic CaV2.2. However, some other factor must also contribute since its inhibition does is not restore the inactivation profile to that of channels in the cell soma.
突触前CaV2.2(N型)钙通道控制钙离子内流以触发递质释放。我们之前在鸡睫状神经节突触前花萼终末证明,这些通道中的大部分对电压依赖性失活具有高度抗性[E.F. 斯坦利、G. 戈平,脊椎动物胆碱能突触前神经终末钙电流的特性,《神经科学杂志》11(1991)985 - 993;E.F. 斯坦利,肉毒杆菌毒素C1揭示的突触前钙通道失活的Syntaxin I调节,《欧洲神经科学杂志》17(2003)1303 - 1305;E.F. 斯坦利、R.R. 米罗茨尼克,Syntaxin的切割阻止G蛋白对突触前钙通道的调节,《自然》(伦敦)385(1997)340 - 343]。最近的研究表明,当与棕榈酰化的β2A亚基一起表达时,CaV2.2可变得对失活具有抗性,并且这种效应可被衣霉素消除,衣霉素是一种动态棕榈酰化的通用抑制剂[J.H. 赫尔利、A.L. 卡希尔、K.P. 柯里、A.P. 福克斯,动态棕榈酰化在Ca(2+)通道失活中的作用,《美国国家科学院院刊》97(2000)9293 - 9298]。我们发现,虽然衣霉素处理对失活敏感的离体鸡背根神经节(DRG)神经元中的CaV2.2电流没有影响,但它导致对失活具有抗性的突触前CaV2.2群体的电流轮廓发生10mV的超极化偏移。通过玻尔兹曼斜率因子测量,这种偏移在对失活过程的电压敏感性没有任何影响的情况下发生。我们的研究结果表明,动态棕榈酰化有助于突触前CaV2.2的超极化稳态失活轮廓。然而,一定还有其他因素起作用,因为其抑制并没有将失活轮廓恢复到细胞体中通道的失活轮廓。