Suppr超能文献

贝叶斯置信传播神经网络

Bayesian confidence propagation neural network.

作者信息

Bate Andrew

机构信息

WHO Collaborating Centre for International Drug Monitoring, Uppsala Monitoring Centre, Uppsala, Sweden.

出版信息

Drug Saf. 2007;30(7):623-5. doi: 10.2165/00002018-200730070-00011.

Abstract

A Bayesian confidence propagation neural network (BCPNN)-based technique has been in routine use for data mining the 3 million suspected adverse drug reactions (ADRs) in the WHO database of suspected ADRs of as part of the signal-detection process since 1998. Data mining is used to enhance the early detection of previously unknown possible drug-ADR relationships, by highlighting combinations that stand out quantitatively for clinical review. Now-established signals prospectively detected from routine data mining include topiramate associated glaucoma, and the SSRIs with neonatal withdrawal syndrome. Recent advances in the method and its use will be discussed: (i) the recurrent neural network approach used to analyse cyclo-oxygenase 2 inhibitor data, isolating patterns for both rofecoxib and celecoxib; (ii) the use of data-mining methods to improve data quality, especially the detection of duplicate reports; and (iii) the application of BCPNN to the 2 million patient-record IMS Disease Analyzer.

摘要

自1998年以来,一种基于贝叶斯置信传播神经网络(BCPNN)的技术一直在常规用于挖掘世界卫生组织疑似药品不良反应数据库中300万条疑似药品不良反应数据,作为信号检测过程的一部分。数据挖掘用于通过突出显示在数量上突出的组合以供临床审查,来加强对先前未知的可能药品不良反应关系的早期检测。目前从常规数据挖掘中前瞻性检测到的已确立信号包括托吡酯相关性青光眼,以及与新生儿戒断综合征有关的选择性5-羟色胺再摄取抑制剂。将讨论该方法及其应用的最新进展:(i)用于分析环氧化酶2抑制剂数据的递归神经网络方法,分离出罗非昔布和塞来昔布的模式;(ii)使用数据挖掘方法提高数据质量,特别是检测重复报告;以及(iii)将BCPNN应用于200万份患者记录的IMS疾病分析器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验