Suppr超能文献

使用高斯尺度混合模型和无噪声图像作为先验对多分量图像进行小波去噪。

Wavelet denoising of multicomponent images using gaussian scale mixture models and a noise-free image as priors.

作者信息

Scheunders Paul, De Backer Steve

机构信息

Vision Lab, Department of Physics, University of Antwerp, 2610 Wilrijk, Belgium.

出版信息

IEEE Trans Image Process. 2007 Jul;16(7):1865-72. doi: 10.1109/tip.2007.899598.

Abstract

In this paper, a Bayesian wavelet-based denoising procedure for multicomponent images is proposed. A denoising procedure is constructed that (1) fully accounts for the multicomponent image covariances, (2) makes use of Gaussian scale mixtures as prior models that approximate the marginal distributions of the wavelet coefficients well, and (3) makes use of a noise-free image as extra prior information. It is shown that such prior information is available with specific multicomponent image data of, e.g., remote sensing and biomedical imaging. Experiments are conducted in these two domains, in both simulated and real noisy conditions.

摘要

本文提出了一种基于贝叶斯小波的多分量图像去噪方法。构建了一种去噪方法,该方法:(1) 充分考虑多分量图像协方差;(2) 使用高斯尺度混合作为先验模型,能很好地逼近小波系数的边缘分布;(3) 将无噪声图像用作额外的先验信息。结果表明,对于例如遥感和生物医学成像等特定的多分量图像数据,此类先验信息是可用的。在这两个领域的模拟和真实噪声条件下都进行了实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验