Suppr超能文献

院前急性心肌梗死的识别。

Prehospital recognition of acute myocardial infarction.

机构信息

Chilliwack General Hospital, Chilliwack, British Columbia, Canada.

出版信息

CJEM. 2002 May;4(3):212-4. doi: 10.1017/s1481803500006424.

Abstract

INTRODUCTION

Paramedics often provide advance notice of patients with suspected acute myocardial infarction (AMI) so that emergency department (ED) staff can prepare for early aggressive management and expeditious thrombolysis, but the validity of this practice is unclear. Our objective was to determine the accuracy of prehospital AMI diagnosis by Paramedic Level III (ALS) attendants.

METHODS

ALS paramedics serving a busy community hospital were instructed regarding the clinical diagnosis of chest pain and the value of early thrombolysis. For all patients transported with a chief complaint of chest pain, they were asked to record an explicit diagnosis of "probable AMI" or "chest pain, other." Prehospital diagnoses were subsequently compared to ED diagnoses. Sensitivity, specificity and predictive values of the prehospital diagnosis for AMI were determined.

RESULTS

During the 5-year study period, 1305 patients were studied. Based on clinical features alone, ALS paramedics were 77.8% sensitive and 82.2% specific for the diagnosis of AMI.

CONCLUSION

ALS paramedics can accurately identify patients likely to benefit from early aggressive AMI management. These data have implications with respect to prehospital triage of chest pain patients, "early notification" protocols and future prehospital thrombolytic strategies.

摘要

简介

护理人员经常会提前通知疑似急性心肌梗死(AMI)的患者,以便急诊部门(ED)的工作人员能够为早期积极治疗和迅速溶栓做好准备,但这种做法的有效性尚不清楚。我们的目的是确定护理人员在院前做出 AMI 诊断的准确性。

方法

指导服务于一家繁忙的社区医院的护理人员,使其了解胸痛的临床诊断和早期溶栓的价值。对于所有以胸痛为主诉的转运患者,他们被要求明确诊断为“可能的 AMI”或“胸痛,其他”。随后将院前诊断与 ED 诊断进行比较。确定院前诊断对 AMI 的敏感性、特异性和预测值。

结果

在 5 年的研究期间,共研究了 1305 例患者。仅根据临床特征,护理人员对 AMI 的诊断敏感性为 77.8%,特异性为 82.2%。

结论

护理人员可以准确识别出那些可能从早期积极的 AMI 管理中获益的患者。这些数据对于胸痛患者的院前分诊、“早期通知”方案和未来的院前溶栓策略具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验