Suppr超能文献

空间结构化种群中的确定性偏差:以东部围栏蜥蜴为例的研究

Ascertainment bias in spatially structured populations: a case study in the eastern fence lizard.

作者信息

Rosenblum Erica Bree, Novembre John

机构信息

Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.

出版信息

J Hered. 2007 Jul-Aug;98(4):331-6. doi: 10.1093/jhered/esm031. Epub 2007 Jul 4.

Abstract

Despite increased interest in applying single nucleotide polymorphism (SNP) data to questions in natural systems, one unresolved issue is to what extent the ascertainment bias induced during the SNP discovery phase will impact available analysis methods. Although most studies addressing ascertainment bias have focused on human populations, it is not clear whether existing methods will work when applied to other species with more complex demographic histories and more significant levels of population structure. Here we present findings from an empirical approach to exploring the effect of population structure on issues of ascertainment bias in the Eastern Fence Lizard, Sceloporus undulatus. We find that frequency spectra and summary statistics were highly sensitive to SNP discovery strategy, necessitating careful selection of the initial ascertainment panel. Randomly selected ascertainment panels performed equally well as ascertainment panels chosen to jointly sample geographic, phenotypic, and genetic diversity. Geographically restricted panels resulted in larger biases. Additionally, we found existing ascertainment bias correction methods, which were not developed for geographically structured data sets, were largely effective at reducing the impact of ascertainment bias. Because bias correction methods performed well even when underlying assumptions were violated, our results suggest tools are currently available to analyze SNP data in structured populations.

摘要

尽管将单核苷酸多态性(SNP)数据应用于自然系统问题的兴趣日益增加,但一个尚未解决的问题是,SNP发现阶段产生的确定偏差将在多大程度上影响可用的分析方法。尽管大多数解决确定偏差的研究都集中在人类群体上,但尚不清楚现有方法应用于具有更复杂人口历史和更高水平种群结构的其他物种时是否有效。在这里,我们展示了一种实证方法的研究结果,该方法用于探索种群结构对东部围栏蜥蜴(Sceloporus undulatus)确定偏差问题的影响。我们发现,频率谱和汇总统计对SNP发现策略高度敏感,因此需要谨慎选择初始确定面板。随机选择的确定面板与选择用于联合采样地理、表型和遗传多样性的确定面板表现同样出色。地理上受限的面板会导致更大的偏差。此外,我们发现现有的确定偏差校正方法(这些方法并非为地理结构化数据集开发)在很大程度上有效地减少了确定偏差的影响。由于即使在违反基本假设的情况下偏差校正方法仍表现良好,我们的结果表明目前有工具可用于分析结构化种群中的SNP数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验