Van Den Abeele Koen
Interdisciplinary Research Center, Katholieke Universiteit Leuven Campus Kortrijk, E. Sabbelaan 53, Kortrijk, Belgium.
J Acoust Soc Am. 2007 Jul;122(1):73-90. doi: 10.1121/1.2735807.
A nonlinear version of the resonance ultrasound spectroscopy (RUS) theory is presented as an extension of the RUS formalism to the treatment of microdamage characterized by nonlinear constitutive equations. General analytical equations are derived for the one-dimensional case, describing the excitation amplitude dependent shift in the resonance frequency and the generation of harmonics resulting from the interaction between bar modes due to the presence of either localized or volumetrically distributed nonlinearity. Solutions are obtained for classical cubic nonlinearity, as well as for the more interesting case of hysteresis nonlinearity. The analytical results are in excellent quantitative agreement with numerical calculations from a multiscale model. Finally, the analytical formulas are exploited to infer critical information about damage position, degree of nonlinearity, and width of the damage zone either from the shifts in resonance frequency occurring at different excitation modes, or from the shift and the harmonics predicted at a single mode. Unlike other techniques, the multi-mode-nonlinear RUS method does not require a spatial scan to locate the defect, as it lets different excitation modes, with different vibration patterns, probe the structure. Two general methods are suggested for inverting experimental data.
本文提出了一种共振超声光谱(RUS)理论的非线性版本,作为RUS形式体系的扩展,用于处理以非线性本构方程为特征的微观损伤。推导了一维情况下的一般解析方程,描述了共振频率随激励幅度的变化以及由于局部或体积分布非线性的存在导致棒模式之间相互作用而产生的谐波。得到了经典立方非线性以及更有趣的滞后非线性情况的解。分析结果与多尺度模型的数值计算在定量上非常吻合。最后,利用解析公式从不同激励模式下共振频率的变化,或从单一模式下预测的频率变化和谐波中推断出关于损伤位置、非线性程度和损伤区宽度的关键信息。与其他技术不同,多模式非线性RUS方法不需要进行空间扫描来定位缺陷,因为它可以让具有不同振动模式的不同激励模式探测结构。提出了两种用于反演实验数据的一般方法。