Suppr超能文献

Hydride transfer reaction dynamics of OD+ +C3H6.

作者信息

Liu Li, Richards Elizabeth S, Farrar James M

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.

出版信息

J Chem Phys. 2007 Jun 28;126(24):244315. doi: 10.1063/1.2743025.

Abstract

The hydride transfer reaction between OD+ and C3H6 has been studied experimentally and theoretically over the center of mass collision energy range from 0.21 to 0.92 eV using the crossed beam technique and density functional theory calculations. The center of mass flux distributions of the product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor propylene beam, characteristic of direct reactions. In the hydride transfer process, the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the hydride ion is transferred with both the breaking and forming bonds extended. At higher collision energies, at least 85% of the incremental translational energy appears in product translation, providing a clear example of induced repulsive energy release. Compared to the related reaction of OD+ with C2H4, reaction along the pathway initiated by addition of OD+ to the C=C bond in propylene has a critical bottleneck caused by the torsional motion of the methyl substituent on the double bond. This bottleneck suppresses reaction through an intermediate complex in favor of direct hydride abstraction. Hydride abstraction appears to be a sequential process initiated by electron transfer in the triplet manifold, followed by rapid intersystem crossing and subsequent hydrogen atom transfer to form ground state allyl cation and HOD.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验