Friedman Eric J, Landsberg Adam Scott
School of ORIE, Cornell University, Ithaca, New York 14853, USA.
Chaos. 2007 Jun;17(2):023117. doi: 10.1063/1.2725717.
We develop a new approach to combinatorial games that reveals connections between such games and some of the central ideas of nonlinear dynamics: scaling behaviors, complex dynamics and chaos, universality, and aggregation processes. We take as our model system the combinatorial game Chomp, which is one of the simplest in a class of "unsolved" combinatorial games that includes Chess, Checkers, and Go. We discover that the game possesses an underlying geometric structure that "grows" (reminiscent of crystal growth), and show how this growth can be analyzed using a renormalization procedure adapted from physics. In effect, this methodology allows one to transform a combinatorial game like Chomp into a type of dynamical system. Not only does this provide powerful insights into the game of Chomp (yielding a complete probabilistic description of optimal play in Chomp and an answer to a longstanding question about the nature of the winning opening move), but more generally, it offers a mathematical framework for exploring this unexpected relationship between combinatorial games and modern dynamical systems theory.
我们开发了一种新的组合博弈方法,揭示了此类博弈与非线性动力学的一些核心概念之间的联系:标度行为、复杂动力学与混沌、普遍性以及聚集过程。我们将组合博弈“啃食”作为我们的模型系统,它是一类“未解决”的组合博弈中最简单的博弈之一,这类博弈包括国际象棋、跳棋和围棋。我们发现该博弈具有一种“生长”的潜在几何结构(让人联想到晶体生长),并展示了如何使用从物理学改编而来的重整化程序来分析这种生长。实际上,这种方法允许人们将像“啃食”这样的组合博弈转化为一种动力系统类型。这不仅为“啃食”博弈提供了强大的见解(给出了“啃食”中最优玩法的完整概率描述,并回答了一个关于获胜开局性质的长期问题),更普遍地说,它提供了一个数学框架,用于探索组合博弈与现代动力系统理论之间这种意想不到的关系。