Lu Wenlian
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.
Chaos. 2007 Jun;17(2):023122. doi: 10.1063/1.2737829.
In this paper, we introduce a model of an adaptive dynamical network by integrating the complex network model and adaptive technique. In this model, the adaptive updating laws for each vertex in the network depend only on the state information of its neighborhood, besides itself and external controllers. This suggests that an adaptive technique be added to a complex network without breaking its intrinsic existing network topology. The core of adaptive dynamical networks is to design suitable adaptive updating laws to attain certain aims. Here, we propose two series of adaptive laws to synchronize and pin a complex network, respectively. Based on the Lyapunov function method, we can prove that under several mild conditions, with the adaptive technique, a connected network topology is sufficient to synchronize or stabilize any chaotic dynamics of the uncoupled system. This implies that these adaptive updating laws actually enhance synchronizability and stabilizability, respectively. We find out that even though these adaptive methods can succeed for all networks with connectivity, the underlying network topology can affect the convergent rate and the terminal average coupling and pinning strength. In addition, this influence can be measured by the smallest nonzero eigenvalue of the corresponding Laplacian. Moreover, we provide a detailed study of the influence of the prior parameters in this adaptive laws and present several numerical examples to verify our theoretical results and further discussion.
在本文中,我们通过整合复杂网络模型和自适应技术,引入了一种自适应动态网络模型。在该模型中,网络中每个顶点的自适应更新律仅取决于其邻域的状态信息,以及自身和外部控制器。这表明可以在不破坏复杂网络固有网络拓扑结构的情况下,将自适应技术添加到复杂网络中。自适应动态网络的核心是设计合适的自适应更新律以实现特定目标。在此,我们分别提出了两组自适应律,用于使复杂网络同步和牵制。基于李雅普诺夫函数方法,我们可以证明在若干温和条件下,借助自适应技术,连通的网络拓扑足以使未耦合系统的任何混沌动力学同步或稳定。这意味着这些自适应更新律实际上分别增强了同步性和稳定性。我们发现,尽管这些自适应方法对所有具有连通性的网络都能成功,但底层网络拓扑会影响收敛速度以及最终的平均耦合和牵制强度。此外,这种影响可以通过相应拉普拉斯矩阵的最小非零特征值来衡量。而且,我们对这些自适应律中的先验参数的影响进行了详细研究,并给出了几个数值例子来验证我们的理论结果并作进一步讨论。