Scanlon Joanne A Baylis, Al-Shawi Marwan K, Le Nga Phi, Nakamoto Robert K
Department of Molecular Physiology and Biological Physics, University of Virginia, P.O. Box 800736, Charlottesville, Virginia 22908-0736, USA.
Biochemistry. 2007 Jul 31;46(30):8785-97. doi: 10.1021/bi700610m. Epub 2007 Jul 10.
Steady-state ATP hydrolysis in the F1-ATPase of the F(O)F1 ATP synthase complex involves rotation of the central gamma subunit relative to the catalytic sites in the alpha3beta3 pseudo-hexamer. To understand the relationship between the catalytic mechanism and gamma subunit rotation, the pre-steady-state kinetics of Mg x ATP hydrolysis in the soluble F1-ATPase upon rapid filling of all three catalytic sites was determined. The experimentally accessible partial reactions leading up to the rate-limiting step and continuing through to the steady-state mode were obtained for the first time. The burst kinetics and steady-state hydrolysis for a range of Mg x ATP concentrations provide adequate constraints for a unique minimal kinetic model that can fit all the data and satisfy extensive sensitivity tests. Significantly, the fits show that the ratio of the rates of ATP hydrolysis and synthesis is close to unity even in the steady-state mode of hydrolysis. Furthermore, the rate of Pi binding in the absence of the membranous F(O) sector is insignificant; thus, productive Pi binding does not occur without the influence of a proton motive force. In addition to the minimal steps of ATP binding, reversible ATP hydrolysis/synthesis, and the release of product Pi and ADP, one additional rate-limiting step is required to fit the burst kinetics. On the basis of the testing of all possible minimal kinetic models, this step must follow hydrolysis and precede Pi release in order to explain burst kinetics. Consistent with the single molecule analysis of Yasuda et al. (Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., and Itoh, H. (2001) Nature 410, 898-904), we propose that the rate-limiting step involves a partial rotation of the gamma subunit; hence, we name this step k(gamma). Moreover, the only model that is consistent with our data and many other observations in the literature suggests that reversible hydrolysis/synthesis can only occur in the active site of the beta(TP) conformer (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628).
F(O)F1 ATP合酶复合物的F1 - ATP酶中的稳态ATP水解涉及中央γ亚基相对于α3β3假六聚体中催化位点的旋转。为了理解催化机制与γ亚基旋转之间的关系,测定了在所有三个催化位点快速填充后可溶性F1 - ATP酶中Mg x ATP水解的预稳态动力学。首次获得了直至限速步骤并持续到稳态模式的实验可及的部分反应。一系列Mg x ATP浓度下的爆发动力学和稳态水解为一个独特的最小动力学模型提供了充分的约束,该模型可以拟合所有数据并满足广泛的敏感性测试。值得注意的是,拟合结果表明,即使在水解的稳态模式下,ATP水解和合成速率的比值也接近1。此外,在没有膜状F(O)区段的情况下,Pi结合速率微不足道;因此,没有质子动力的影响就不会发生有效的Pi结合。除了ATP结合、可逆的ATP水解/合成以及产物Pi和ADP的释放这些最小步骤外,还需要一个额外的限速步骤来拟合爆发动力学。基于对所有可能的最小动力学模型的测试,这个步骤必须在水解之后且在Pi释放之前,以便解释爆发动力学。与安田等人的单分子分析一致(安田,R.,野路,H.,吉田,M.,木下,K.,和伊藤,H.((2001年)《自然》410,898 -
904)),我们提出限速步骤涉及γ亚基的部分旋转;因此,我们将此步骤命名为k(γ)。此外,与我们的数据以及文献中的许多其他观察结果一致的唯一模型表明,可逆水解/合成只能在β(TP)构象体的活性位点发生(亚伯拉罕斯,J.P.,莱斯利,A.G.W.,卢特,R.,和沃克,J.E.(1(994年)《自然》370,621 - 628))。