Tijms Marieke A, Nedialkova Danny D, Zevenhoven-Dobbe Jessika C, Gorbalenya Alexander E, Snijder Eric J
Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
J Virol. 2007 Oct;81(19):10496-505. doi: 10.1128/JVI.00683-07. Epub 2007 Jul 11.
Many groups of plus-stranded RNA viruses produce additional, subgenomic mRNAs to regulate the expression of part of their genome. Arteriviruses and coronaviruses (order Nidovirales) are unique among plus-stranded RNA viruses for using a mechanism of discontinuous RNA synthesis to produce a nested set of 5'- and 3'-coterminal subgenomic mRNAs, which serve to express the viral structural protein genes. The discontinuous step presumably occurs during minus-strand synthesis and joins noncontiguous sequences copied from the 3'- and 5'-proximal domains of the genomic template. Nidovirus genome amplification ("replication") and subgenomic mRNA synthesis ("transcription") are driven by 13 to 16 nonstructural proteins (nsp's), generated by autocatalytic processing of two large "replicase" polyproteins. Previously, using a replicon system, the N-terminal nsp1 replicase subunit of the arterivirus equine arteritis virus (EAV) was found to be dispensable for replication but crucial for transcription. Using reverse genetics, we have now addressed the role of nsp1 against the background of the complete EAV life cycle. Mutagenesis revealed that nsp1 is in fact a multifunctional regulatory protein. Its papain-like autoprotease domain releases nsp1 from the replicase polyproteins, a cleavage essential for viral RNA synthesis. Several mutations in the putative N-terminal zinc finger domain of nsp1 selectively abolished transcription, while replication was either not affected or even increased. Other nsp1 mutations did not significantly affect either replication or transcription but still dramatically reduced the production of infectious progeny. Thus, nsp1 is involved in at least three consecutive key processes in the EAV life cycle: replicase polyprotein processing, transcription, and virion biogenesis.
许多正链RNA病毒群体产生额外的亚基因组mRNA,以调控其部分基因组的表达。动脉炎病毒和冠状病毒(尼多病毒目)在正链RNA病毒中独具特色,它们利用不连续RNA合成机制产生一组5'端和3'端共末端的嵌套亚基因组mRNA,用于表达病毒结构蛋白基因。不连续步骤可能发生在负链合成过程中,并连接从基因组模板3'端和5'端近端区域复制的不连续序列。尼多病毒基因组扩增(“复制”)和亚基因组mRNA合成(“转录”)由13至16种非结构蛋白(nsp)驱动,这些蛋白由两种大型“复制酶”多蛋白的自催化加工产生。此前,利用复制子系统发现,动脉炎病毒马动脉炎病毒(EAV)的N端nsp1复制酶亚基对复制并非必需,但对转录至关重要。利用反向遗传学,我们现在在完整的EAV生命周期背景下研究了nsp1的作用。诱变揭示nsp1实际上是一种多功能调节蛋白。其木瓜蛋白酶样自蛋白酶结构域从复制酶多蛋白中释放nsp1,这种切割对病毒RNA合成至关重要。nsp1假定的N端锌指结构域中的几个突变选择性地消除了转录,而复制要么不受影响,甚至有所增加。其他nsp1突变对复制或转录均无显著影响,但仍大幅降低了感染性子代的产生。因此,nsp1参与了EAV生命周期中至少三个连续的关键过程:复制酶多蛋白加工、转录和病毒粒子生物发生。