Motaleb Md A, Miller Michael R, Li Chunhao, Charon Nyles W
Department of Microbiology, West Virginia University, Morgantown, West Virginia, USA.
Methods Enzymol. 2007;422:438-47. doi: 10.1016/S0076-6879(06)22022-6.
Borrelia burgdorferi has a complex chemotaxis signal transduction system with multiple chemotaxis gene homologs similar to those found in Escherichia coli and Bacillus subtilis. The B. burgdorferi genome sequence encodes two cheA, three cheY, three cheW, two cheB, two cheR, but no cheZ genes. Instead of cheZ, B. burgdorferi contains a different CheY-P phosphatase, referred to as cheX. The multiple B. burgdorferi histidine kinases (CheA1 and CheA2) and response regulators (CheY1, CheY2, and CheY3) possess all the domains and functional residues found in E. coli CheA and CheY, respectively. Understanding protein phosphorylation is critical to unraveling many biological processes, including chemotaxis signal transduction, motility, growth control, metabolism, and disease processes. E. coli, Salmonella enterica serovar Typhimurium, and B. subtilis chemotaxis systems have been studied extensively, providing models to understand chemotaxis signaling in the Lyme disease spirochete B. burgdorferi. Both genetic approaches and biochemical analyses are essential in understanding its complex two-component chemotaxis systems. Specifically, gene inactivation studies assess the importance of specific genes in chemotaxis and motility under certain conditions. Furthermore, biochemical approaches help determine the following in vitro reactions: (1) the extent that the histidine kinases, CheA1 and CheA2, are autophosphorylated using ATP; (2) the transfer of phosphate from CheA1-P and CheA2-P to each CheY species; and (3) the dephosphorylation of each CheY-P species by CheX. We hypothesize that characterizing protein phosphorylation in the B. burgdorferi two-component chemotaxis system will facilitate understanding of how the periplasmic flagellar bundles located near each end of B. burgdorferi cells are coordinately regulated for chemotaxis. During chemotaxis, these bacteria run, pause (stop/flex), and reverse (run again). This chapter describes protocols for assessing B. burgdorferi CheA autophosphorylation, transfer of phosphate from CheA-P to CheY, and CheY-P dephosphorylation.
伯氏疏螺旋体具有一个复杂的趋化信号转导系统,拥有多个趋化基因同源物,类似于在大肠杆菌和枯草芽孢杆菌中发现的那些。伯氏疏螺旋体的基因组序列编码两个cheA、三个cheY、三个cheW、两个cheB、两个cheR,但没有cheZ基因。伯氏疏螺旋体没有cheZ,而是含有一种不同的CheY-P磷酸酶,称为cheX。多种伯氏疏螺旋体组氨酸激酶(CheA1和CheA2)和应答调节因子(CheY1、CheY2和CheY3)分别具有在大肠杆菌CheA和CheY中发现的所有结构域和功能残基。理解蛋白质磷酸化对于阐明许多生物学过程至关重要,包括趋化信号转导、运动性、生长控制、代谢和疾病过程。大肠杆菌、鼠伤寒沙门氏菌血清型鼠伤寒菌和枯草芽孢杆菌的趋化系统已得到广泛研究,可以作为理解莱姆病螺旋体伯氏疏螺旋体趋化信号的模型。遗传方法和生化分析对于理解其复杂的双组分趋化系统都至关重要。具体而言,基因失活研究评估特定基因在某些条件下对趋化和运动性的重要性。此外,生化方法有助于确定以下体外反应:(1)组氨酸激酶CheA1和CheA2利用ATP进行自身磷酸化的程度;(2)磷酸从CheA1-P和CheA2-P转移到每种CheY的情况;(3)CheX对每种CheY-P的去磷酸化作用。我们假设,对伯氏疏螺旋体双组分趋化系统中的蛋白质磷酸化进行表征将有助于理解位于伯氏疏螺旋体细胞两端附近的周质鞭毛束如何协调调节趋化作用。在趋化过程中,这些细菌游动、暂停(停止/弯曲)和反转(再次游动)。本章描述了评估伯氏疏螺旋体CheA自身磷酸化、磷酸从CheA-P转移到CheY以及CheY-P去磷酸化的实验方案。