Suppr超能文献

非均质多孔地层中非反应性溶质浓度的概率密度函数。

Probability density function of non-reactive solute concentration in heterogeneous porous formations.

作者信息

Bellin Alberto, Tonina Daniele

机构信息

Dipartimento di Ingegneria Civile e Ambientale, Università di Trento, via Mesiano 77, I-38050 Trento, Italy.

出版信息

J Contam Hydrol. 2007 Oct 30;94(1-2):109-25. doi: 10.1016/j.jconhyd.2007.05.005. Epub 2007 Jun 12.

Abstract

Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide concentrations from the first Cape Cod tracer test and to a set of numerical simulations confirms the above findings and for the first time it shows the superiority of the Beta model to both Normal and Log-Normal models in interpreting field data. Furthermore, we show that assuming a-priori that local concentrations are normally or log-normally distributed may result in a severe underestimate of the probability of exceeding large concentrations.

摘要

非均质地层中溶质运移的现有模型在提供预测浓度的完整表征方面存在不足。这是一个严重的缺陷,尤其是在需要置信区间和超过阈值概率的风险分析中。我们为填补这一知识空白所做的贡献是一个概率分布模型,用于描述在非均质含水层中迁移的保守示踪剂的局部浓度。我们的模型考虑了稀释、采样体积内的机械混合以及由于地层非均质性导致的扩散。它是通过用伊藤随机微分方程(SDE)对局部浓度动态进行建模而开发的,在统计平稳性假设下,该方程导致溶质浓度的贝塔概率分布函数(pdf)。该模型在捕捉采样体积的平滑效应以及相关的超过高浓度概率的降低方面表现出很大的灵活性。此外,它完全由溶质浓度的前两个矩来表征,而这些正是采用正态或对数正态分布的标准地质统计学技术所需的相同信息。此外,我们表明,在没有孔隙尺度弥散且对于点浓度的情况下,pdf模型收敛于[达根,G.,1982年。通过无条件和条件概率对地下水流进行随机建模,2,溶质运移。水资源研究。18(4),835 - 848。]的二元分布,而对于远大于含水层非均质性特征尺度的采样体积,它趋近于正态分布。此外,我们证明,用空间矩代替统计矩的同一模型可用于估计溶质浓度高于或低于临界阈值的羽状体体积比例。将该模型应用于科德角首次示踪剂试验中的点浓度和垂直平均溴化物浓度以及一组数值模拟证实了上述发现,并且首次表明在解释现场数据方面,贝塔模型优于正态和对数正态模型。此外,我们表明,先验假设局部浓度呈正态或对数正态分布可能会严重低估超过高浓度的概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验