Suppr超能文献

基于细胞穿透肽的寡核苷酸递送:综述。

Cell-penetrating-peptide-based delivery of oligonucleotides: an overview.

作者信息

Abes R, Arzumanov A A, Moulton H M, Abes S, Ivanova G D, Iversen P L, Gait M J, Lebleu B

机构信息

UMR 5235 CNRS, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.

出版信息

Biochem Soc Trans. 2007 Aug;35(Pt 4):775-9. doi: 10.1042/BST0350775.

Abstract

Cationic CPPs (cell-penetrating peptides) have been used largely for intracellular delivery of low-molecular-mass drugs, biomolecules and particles. Most cationic CPPs bind to cell-associated glycosaminoglycans and are internalized by endocytosis, although the detailed mechanisms involved remain controversial. Sequestration and degradation in endocytic vesicles severely limits the efficiency of cytoplasmic and/or nuclear delivery of CPP-conjugated material. Re-routing the splicing machinery by using steric-block ON (oligonucleotide) analogues, such as PNAs (peptide nucleic acids) or PMOs (phosphorodiamidate morpholino oligomers), has consequently been inefficient when ONs are conjugated with standard CPPs such as Tat (transactivator of transcription), R(9) (nona-arginine), K(8) (octalysine) or penetratin in the absence of endosomolytic agents. New arginine-rich CPPs such as (R-Ahx-R)(4) (6-aminohexanoic acid-spaced oligo-arginine) or R(6) (hexa-arginine)-penetratin conjugated to PMO or PNA resulted in efficient splicing correction at non-cytotoxic doses in the absence of chloroquine. SAR (structure-activity relationship) analyses are underway to optimize these peptide delivery vectors and to understand their mechanisms of cellular internalization.

摘要

阳离子细胞穿透肽(CPPs)已广泛用于低分子量药物、生物分子和颗粒的细胞内递送。大多数阳离子CPPs与细胞相关的糖胺聚糖结合,并通过内吞作用内化,尽管其中涉及的详细机制仍存在争议。内吞小泡中的隔离和降解严重限制了CPP偶联物向细胞质和/或细胞核递送的效率。因此,当在没有溶酶体溶解剂的情况下,寡核苷酸(ON)与标准CPPs(如转录激活因子Tat、九聚精氨酸R(9)、八聚赖氨酸K(8)或穿膜肽)偶联时,使用空间位阻ON(寡核苷酸)类似物(如肽核酸(PNA)或磷酰二胺吗啉代寡聚物(PMO))重新引导剪接机制效率低下。在没有氯喹的情况下,新的富含精氨酸的CPPs,如(R-Ahx-R)(4)(间隔6-氨基己酸的寡聚精氨酸)或与PMO或PNA偶联的六聚精氨酸R(6)-穿膜肽,在无细胞毒性剂量下能有效纠正剪接。目前正在进行构效关系(SAR)分析,以优化这些肽递送载体并了解其细胞内化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验