Suppr超能文献

对于临床随访为阴性的头颈部鳞状细胞癌患者,18氟-氟脱氧葡萄糖正电子发射断层扫描能否改善复发检测?

Does 18fluoro-fluorodeoxyglucose positron emission tomography improve recurrence detection in patients treated for head and neck squamous cell carcinoma with negative clinical follow-up?

作者信息

Salaun Pierre Y, Abgral Ronan, Querellou Solène, Couturier Olivier, Valette Gérald, Bizais Yves, Kraeber-Bodéré Françoise

机构信息

Nuclear Medicine Department, University Hospital of Brest, Boulevard Tanguy Prigent, 29200 Brest, France.

出版信息

Head Neck. 2007 Dec;29(12):1115-20. doi: 10.1002/hed.20645.

Abstract

BACKGROUND

The aim of this study was to determine the benefits of 18fluoro-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in the detection of head and neck squamous cell carcinoma (HNSCC) recurrence in patients with negative clinical follow-up.

METHODS

Whole-body 18FDG-PET was performed in 30 patients treated for HNSCC without any clinical element for recurrence.

RESULTS

Twenty-one negative PET and 9 positive results were seen. One patient with abnormal 18F-FDG uptake in the laryngeal area did not have recurrent HNSCC (false positive). Eight had proven recurrence. The sensitivity and specificity of 18F-FDG PET for the diagnosis of HNSCC recurrence were 100% (8/8) and 95% (21/22), respectively. The positive predictive value was 89% (8/9). The negative predictive value was 100% (21/21). The overall accuracy was 97% (29/30).

CONCLUSION

The results of our study confirm the high effectiveness of 18F-FDG PET in assessment of HNSCC recurrence and suggest that it is more accurate than conventional physical examination follow-up alone.

摘要

背景

本研究的目的是确定18氟-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG PET)在临床随访阴性的头颈部鳞状细胞癌(HNSCC)患者复发检测中的益处。

方法

对30例接受HNSCC治疗且无任何复发临床迹象的患者进行全身18FDG-PET检查。

结果

PET检查结果为21例阴性,9例阳性。1例喉区18F-FDG摄取异常的患者并无HNSCC复发(假阳性)。8例确诊为复发。18F-FDG PET诊断HNSCC复发的敏感性和特异性分别为100%(8/8)和95%(21/22)。阳性预测值为89%(8/9)。阴性预测值为100%(21/21)。总体准确率为97%(29/30)。

结论

我们的研究结果证实了18F-FDG PET在评估HNSCC复发方面的高效性,并表明它比单纯的传统体格检查随访更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验