Khairallah George N, O'Hair Richard A J
School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
Dalton Trans. 2007 Aug 7(29):3149-57. doi: 10.1039/b700132k. Epub 2007 May 17.
The gas phase ion-molecule reactions of silver cluster cations (Ag(n)(+)) and silver hydride cluster cations (Ag(m)H(+)) with 2-iodoethanol have been examined using multistage mass spectrometry experiments in a quadrupole ion trap mass spectrometer. These clusters exhibit size selective reactivity: Ag(2)H(+), Ag(3)(+), and Ag(4)H(+) undergo sequential ligand addition only, while Ag(5)(+) and Ag(6)H(+) also promote both C-I and C-OH bond activation of 2-iodoethanol. Collision induced dissociation (CID) of Ag(5)HIO(+), the product of C-I and C-OH bond activation by Ag(5)(+), yielded Ag(4)OH(+), Ag(4)I(+) and Ag(3)(+), consistent with a structure containing AgI and AgOH moieties. Ag(6)H(+) promotes both C-I and C-OH bond activation of 2-iodoethanol to yield the metathesis product Ag(6)I(+) as well as Ag(6)H(2)IO(+). The metathesis product Ag(6)I(+) also promotes C-I and C-OH bond activation.DFT calculations were carried out to gain insights into the reaction of Ag(5)(+) with ICH(2)CH(2)OH by calculating possible structures and their energies for the following species: (i) initial adducts of Ag(5)(+) and ICH(2)CH(2)OH, (ii) the subsequent Ag(5)HIO(+) product, (iii) CID products of Ag(5)HIO(+). Potential adducts were probed by allowing ICH(2)CH(2)OH to bind in different ways (monodentate through I, monodentate through OH, bidentate) at different sites for two isomers of Ag(5)(+): the global minimum "bowtie" structure, 1, and the higher energy trigonal bipyramidal isomer, 2. The following structural trends emerged: (i) ICH(2)CH(2)OH binds in a monodentate fashion to the silver core with little distortion, (ii) ICH(2)CH(2)OH binds to 1 in a bidentate fashion with some distortion to the silver core, and (iii) ICH(2)CH(2)OH binds to 2 and results in a significant distortion or rearrangement of the silver core. The DFT calculated minimum energy structure of Ag(5)HIO(+) consists of an OH ligated to the face of a distorted trigonal bipyramid with I located at a vertex, while those for both Ag(4)X(+) (X = OH, I) involve AgX bound to a Ag(3)(+) core. The calculations also predict the following: (i) the ion-molecule reaction of Ag(5)(+) and ICH(2)CH(2)OH to yield Ag(5)HIO(+) is exothermic by 34.3 kcal mol(-1), consistent with the fact that this reaction readily occurs under the near thermal experimental conditions, (ii) the lowest energy products for fragmentation of Ag(5)HIO(+) arise from loss of AgI, consistent with this being the major pathway in the CID experiments.
在四极杆离子阱质谱仪中,通过多级质谱实验研究了银团簇阳离子(Ag(n)(+))和氢化银团簇阳离子(Ag(m)H(+))与2-碘乙醇的气相离子-分子反应。这些团簇表现出尺寸选择性反应性:Ag(2)H(+)、Ag(3)(+)和Ag(4)H(+)仅发生连续的配体加成反应,而Ag(5)(+)和Ag(6)H(+)还能促进2-碘乙醇的C-I键和C-OH键活化。Ag(5)(+)使C-I键和C-OH键活化生成的产物Ag(5)HIO(+)的碰撞诱导解离(CID)产生了Ag(4)OH(+)、Ag(4)I(+)和Ag(3)(+),这与含有AgI和AgOH部分的结构一致。Ag(6)H(+)促进2-碘乙醇的C-I键和C-OH键活化,生成复分解产物Ag(6)I(+)以及Ag(6)H(2)IO(+)。复分解产物Ag(6)I(+)也能促进C-I键和C-OH键活化。进行了密度泛函理论(DFT)计算,通过计算以下物种的可能结构及其能量,深入了解Ag(5)(+)与ICH(2)CH(2)OH的反应:(i) Ag(5)(+)与ICH(2)CH(2)OH的初始加合物,(ii) 随后的Ag(5)HIO(+)产物,(iii) Ag(5)HIO(+)的CID产物。通过让ICH(2)CH(2)OH以不同方式(通过I单齿配位、通过OH单齿配位、双齿配位)在Ag(5)(+)的两种异构体的不同位点结合,探测了潜在的加合物:全局最小的“领结”结构1和能量较高的三角双锥异构体2。出现了以下结构趋势:(i) ICH(2)CH(2)OH以单齿方式与银核结合,几乎没有变形,(ii) ICH(2)CH(2)OH以双齿方式与1结合,银核有一些变形,(iii) ICH(2)CH(2)OH与2结合,导致银核发生显著变形或重排。DFT计算得到的Ag(5)HIO(+)的最低能量结构由一个OH连接到一个扭曲三角双锥的面上,I位于一个顶点,而Ag(4)X(+)(X = OH,I)的最低能量结构都涉及AgX与一个Ag(3)(+)核相连。计算还预测:(i) Ag(5)(+)与ICH(2)CH(2)OH的离子-分子反应生成Ag(5)HIO(+)放热34.3 kcal mol(-1),这与该反应在接近热的实验条件下容易发生的事实一致,(ii) Ag(5)HIO(+)碎片化的最低能量产物来自AgI的损失,这与这是CID实验中的主要途径一致。