Suppr超能文献

海洋硅藻光合碳同化的C3和C4途径受遗传控制,而非环境控制。

C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control.

作者信息

Roberts Karen, Granum Espen, Leegood Richard C, Raven John A

机构信息

Plant Research Unit, University of Dundee at Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom.

出版信息

Plant Physiol. 2007 Sep;145(1):230-5. doi: 10.1104/pp.107.102616. Epub 2007 Jul 20.

Abstract

Marine diatoms are responsible for up to 20% of global CO(2) fixation. Their photosynthetic efficiency is enhanced by concentrating CO(2) around Rubisco, diminishing photorespiration, but the mechanism is yet to be resolved. Diatoms have been regarded as C(3) photosynthesizers, but recent metabolic labeling and genome sequencing data suggest that they perform C(4) photosynthesis. We studied the pathways of photosynthetic carbon assimilation in two diatoms by short-term metabolic (14)C labeling. In Thalassiosira weissflogii, both C3 (glycerate-P and triose-P) and C4 (mainly malate) compounds were major initial (2-5 s) products, whereas Thalassiosira pseudonana produced mainly C3 and C6 (hexose-P) compounds. The data provide evidence of C(3)-C(4) intermediate photosynthesis in T. weissflogii, but exclusively C(3) photosynthesis in T. pseudonana. The labeling patterns were the same for cells grown at near-ambient (380 microL L(-1)) and low (100 microL L(-1)) CO(2) concentrations. The lack of environmental modulation of carbon assimilatory pathways was supported in T. pseudonana by measurements of gene transcript and protein abundances of C(4)-metabolic enzymes (phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase) and Rubisco. This study suggests that the photosynthetic pathways of diatoms are diverse, and may involve combined CO(2)-concentrating mechanisms. Furthermore, it emphasizes the requirement for metabolic and functional genetic and enzymic analyses before accepting the presence of C(4)-metabolic enzymes as evidence for C(4) photosynthesis.

摘要

海洋硅藻贡献了全球高达20%的二氧化碳固定量。它们通过在核酮糖-1,5-二磷酸羧化酶(Rubisco)周围浓缩二氧化碳来提高光合效率,减少光呼吸,但该机制尚未得到解决。硅藻一直被视为C3光合生物,但最近的代谢标记和基因组测序数据表明它们进行C4光合作用。我们通过短期代谢(14)C标记研究了两种硅藻光合碳同化的途径。在威氏海链藻中,C3(甘油酸-P和磷酸丙糖)和C4(主要是苹果酸)化合物都是主要的初始(2-5秒)产物,而假微型海链藻主要产生C3和C6(己糖-P)化合物。这些数据为威氏海链藻中C3-C4中间型光合作用提供了证据,但假微型海链藻仅进行C3光合作用。在接近环境(380 μL L-1)和低(100 μL L-1)二氧化碳浓度下生长的细胞,其标记模式相同。通过测量C4代谢酶(磷酸烯醇式丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶)和Rubisco的基因转录本和蛋白质丰度,在假微型海链藻中证实了碳同化途径缺乏环境调节。这项研究表明硅藻的光合途径是多样的,可能涉及联合的二氧化碳浓缩机制。此外,它强调在接受存在C4代谢酶作为C4光合作用证据之前,需要进行代谢、功能遗传和酶学分析。

相似文献

1
C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control.
Plant Physiol. 2007 Sep;145(1):230-5. doi: 10.1104/pp.107.102616. Epub 2007 Jul 20.
2
The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.
Plant Physiol. 2004 Aug;135(4):2106-11. doi: 10.1104/pp.104.041319. Epub 2004 Jul 30.
4
Unicellular C4 photosynthesis in a marine diatom.
Nature. 2000 Oct 26;407(6807):996-9. doi: 10.1038/35039612.
7
Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana.
Photosynth Res. 2014 Sep;121(2-3):251-63. doi: 10.1007/s11120-014-9968-9. Epub 2014 Jan 11.
8
The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum.
New Phytol. 2013 Jan;197(1):177-185. doi: 10.1111/j.1469-8137.2012.04375.x. Epub 2012 Oct 19.
9
Responses of carbonic anhydrases and Rubisco to abrupt CO changes of seawater in two marine diatoms.
Environ Sci Pollut Res Int. 2019 Jun;26(16):16388-16395. doi: 10.1007/s11356-019-05101-5. Epub 2019 Apr 13.
10
The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
J Exp Bot. 2017 Jun 1;68(14):3751-3762. doi: 10.1093/jxb/erx130.

引用本文的文献

1
The contribution of biophysical and biochemical CO concentration mechanisms to the carbon fixation of the green macroalga .
Mar Life Sci Technol. 2024 Dec 12;7(3):537-548. doi: 10.1007/s42995-024-00265-7. eCollection 2025 Aug.
2
Inorganic Carbon Acquisition and Photosynthetic Metabolism in Marine Photoautotrophs: A Summary.
Plants (Basel). 2025 Mar 13;14(6):904. doi: 10.3390/plants14060904.
3
PredPSP: a novel computational tool to discover pathway-specific photosynthetic proteins in plants.
Plant Mol Biol. 2024 Sep 24;114(5):106. doi: 10.1007/s11103-024-01500-6.
4
Benzoyl Chloride Derivatization Advances the Quantification of Dissolved Polar Metabolites on Coral Reefs.
J Proteome Res. 2024 Jun 7;23(6):2041-2053. doi: 10.1021/acs.jproteome.4c00049. Epub 2024 May 23.
5
Quantitative Proteomic Analysis Reveals the Key Molecular Events Driving Bloom and Dissipation.
Int J Mol Sci. 2022 Oct 21;23(20):12668. doi: 10.3390/ijms232012668.
6
Editorial: Metabolic Regulation of Diatoms and Other Chromalveolates.
Front Plant Sci. 2022 May 3;13:897639. doi: 10.3389/fpls.2022.897639. eCollection 2022.
7
green-tide outbreaks and their environmental impact in the Yellow Sea, China.
Natl Sci Rev. 2019 Jul;6(4):825-838. doi: 10.1093/nsr/nwz026. Epub 2019 Mar 19.
9
Carbon Dioxide Concentration Mechanisms in Natural Populations of Marine Diatoms: Insights From Oceans.
Front Plant Sci. 2021 Apr 30;12:657821. doi: 10.3389/fpls.2021.657821. eCollection 2021.
10
Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom .
Front Plant Sci. 2021 Apr 9;12:642199. doi: 10.3389/fpls.2021.642199. eCollection 2021.

本文引用的文献

1
Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii.
Funct Plant Biol. 2002 Apr;29(3):301-308. doi: 10.1071/PP01199.
4
Carbon acquisition by diatoms.
Photosynth Res. 2007 Jul-Sep;93(1-3):79-88. doi: 10.1007/s11120-007-9172-2. Epub 2007 May 12.
6
Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.
Environ Microbiol. 2007 Feb;9(2):403-13. doi: 10.1111/j.1462-2920.2006.01151.x.
7
Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52. doi: 10.1073/pnas.0604795103. Epub 2006 Jul 25.
8
The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae.
Protist. 2006 Jun;157(2):91-124. doi: 10.1016/j.protis.2006.02.003. Epub 2006 Apr 19.
9
Biochemistry: a cadmium enzyme from a marine diatom.
Nature. 2005 May 5;435(7038):42. doi: 10.1038/435042a.
10
CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.
Annu Rev Plant Biol. 2005;56:99-131. doi: 10.1146/annurev.arplant.56.032604.144052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验