Wenzel H Jürgen, Vacher Helene, Clark Eliana, Trimmer James S, Lee Angela L, Sapolsky Robert M, Tempel Bruce L, Schwartzkroin Philip A
Department of Neurological Surgery, School of Medicine, University of California-Davis, 1515 Newton Court, Davis, CA 95618, USA.
Epilepsia. 2007 Nov;48(11):2023-46. doi: 10.1111/j.1528-1167.2007.01189.x. Epub 2007 Jul 25.
Mice lacking the Kv1.1 potassium channel alpha subunit encoded by the Kcna1 gene develop recurrent behavioral seizures early in life. We examined the neuropathological consequences of seizure activity in the Kv1.1(-/-) (knock-out) mouse, and explored the effects of injecting a viral vector carrying the deleted Kcna1 gene into hippocampal neurons.
Morphological techniques were used to assess neuropathological patterns in hippocampus of Kv1.1(-/-) animals. Immunohistochemical and biochemical techniques were used to monitor ion channel expression in Kv1.1(-/-) brain. Both wild-type and knockout mice were injected (bilaterally into hippocampus) with an HSV1 amplicon vector that contained the rat Kcna1 subunit gene and/or the E. coli lacZ reporter gene. Vector-injected mice were examined to determine the extent of neuronal infection.
Video/EEG monitoring confirmed interictal abnormalities and seizure occurrence in Kv1.1(-/-) mice. Neuropathological assessment suggested that hippocampal damage (silver stain) and reorganization (Timm stain) occurred only after animals had exhibited severe prolonged seizures (status epilepticus). Ablation of Kcna1 did not result in compensatory changes in expression levels of other related ion channel subunits. Vector injection resulted in infection primarily of granule cells in hippocampus, but the number of infected neurons was quite variable across subjects. Kcna1 immunocytochemistry showed "ectopic" Kv1.1 alpha channel subunit expression.
Kcna1 deletion in mice results in a seizure disorder that resembles--electrographically and neuropathologically--the patterns seen in rodent models of temporal lobe epilepsy. HSV1 vector-mediated gene transfer into hippocampus yielded variable neuronal infection.
缺乏由Kcna1基因编码的Kv1.1钾通道α亚基的小鼠在生命早期会出现反复的行为性癫痫发作。我们研究了Kv1.1基因敲除(-/-)小鼠癫痫活动的神经病理学后果,并探讨了将携带缺失的Kcna1基因的病毒载体注入海马神经元的效果。
采用形态学技术评估Kv1.1(-/-)动物海马中的神经病理学模式。使用免疫组织化学和生化技术监测Kv1.1(-/-)大脑中离子通道的表达。将野生型和基因敲除小鼠(双侧注入海马)注射含有大鼠Kcna1亚基基因和/或大肠杆菌lacZ报告基因的HSV1扩增载体。对注射载体的小鼠进行检查以确定神经元感染的程度。
视频/脑电图监测证实Kv1.1(-/-)小鼠存在发作间期异常和癫痫发作。神经病理学评估表明,只有在动物出现严重的长时间癫痫发作(癫痫持续状态)后,海马才会发生损伤(银染)和重组(Timm染色)。Kcna1的缺失并未导致其他相关离子通道亚基表达水平的代偿性变化。载体注射主要导致海马颗粒细胞感染,但不同个体的感染神经元数量差异很大。Kcna1免疫细胞化学显示“异位”Kv1.1α通道亚基表达。
小鼠中Kcna1的缺失导致一种癫痫疾病,在电生理和神经病理学上类似于颞叶癫痫啮齿动物模型中所见的模式。HSV1载体介导的基因转移到海马中产生了可变的神经元感染。