Suppr超能文献

全基因组分析揭示了ETS基因家族内冗余和特异性启动子占据的特性。

Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family.

作者信息

Hollenhorst Peter C, Shah Atul A, Hopkins Christopher, Graves Barbara J

机构信息

Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Genes Dev. 2007 Aug 1;21(15):1882-94. doi: 10.1101/gad.1561707. Epub 2007 Jul 24.

Abstract

The conservation of in vitro DNA-binding properties within families of transcription factors presents a challenge for achieving in vivo specificity. To uncover the mechanisms regulating specificity within the ETS gene family, we have used chromatin immunoprecipitation coupled with genome-wide promoter microarrays to query the occupancy of three ETS proteins in a human T-cell line. Unexpectedly, redundant occupancy was frequently detected, while specific occupancy was less likely. Redundant binding correlated with housekeeping classes of genes, whereas specific binding examples represented more specialized genes. Bioinformatics approaches demonstrated that redundant binding correlated with consensus ETS-binding sequences near transcription start sites. In contrast, specific binding sites diverged dramatically from the consensus and were found further from transcription start sites. One route to specificity was found--a highly divergent binding site that facilitates ETS1 and RUNX1 cooperative DNA binding. The specific and redundant DNA-binding modes suggest two distinct roles for members of the ETS transcription factor family.

摘要

转录因子家族内体外DNA结合特性的保守性对实现体内特异性提出了挑战。为了揭示调控ETS基因家族内特异性的机制,我们利用染色质免疫沉淀结合全基因组启动子微阵列来检测人T细胞系中三种ETS蛋白的占据情况。出乎意料的是,经常检测到冗余占据,而特异性占据则不太可能。冗余结合与管家基因类别相关,而特异性结合实例代表更具特异性的基因。生物信息学方法表明,冗余结合与转录起始位点附近的共有ETS结合序列相关。相比之下,特异性结合位点与共有序列有很大差异,且距离转录起始位点更远。发现了一条实现特异性的途径——一个高度发散的结合位点,它促进了ETS1和RUNX1的协同DNA结合。特异性和冗余性DNA结合模式表明ETS转录因子家族成员具有两种不同的作用。

相似文献

1
Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family.
Genes Dev. 2007 Aug 1;21(15):1882-94. doi: 10.1101/gad.1561707. Epub 2007 Jul 24.
2
DNA specificity determinants associate with distinct transcription factor functions.
PLoS Genet. 2009 Dec;5(12):e1000778. doi: 10.1371/journal.pgen.1000778. Epub 2009 Dec 18.
3
Regulation of the human leukemia inhibitory factor gene by ETS transcription factors.
Neuroimmunomodulation. 2004;11(1):10-9. doi: 10.1159/000072964.
4
The human CD6 gene is transcriptionally regulated by RUNX and Ets transcription factors in T cells.
Mol Immunol. 2009 Jul;46(11-12):2226-35. doi: 10.1016/j.molimm.2009.04.018. Epub 2009 May 14.
6
Regulation of the human LAT gene by the Elf-1 transcription factor.
BMC Mol Biol. 2006 Feb 7;7:4. doi: 10.1186/1471-2199-7-4.
7
Isolation and characterization of the human Cdc2L1 gene promoter.
Gene. 2005 Jan 3;344:53-60. doi: 10.1016/j.gene.2004.10.020. Epub 2004 Dec 10.
8
Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1.
EMBO J. 1998 Jul 1;17(13):3669-80. doi: 10.1093/emboj/17.13.3669.
10
Genomic and biochemical insights into the specificity of ETS transcription factors.
Annu Rev Biochem. 2011;80:437-71. doi: 10.1146/annurev.biochem.79.081507.103945.

引用本文的文献

1
Genome-wide rules of transcription factor cooperativity revealed through binding site ablation.
bioRxiv. 2025 Jun 24:2025.06.19.660093. doi: 10.1101/2025.06.19.660093.
2
Structure and cooperative formation of a FLI1 filament on contiguous GGAA DNA sites.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf205.
3
ARID1A mutations protect follicular lymphoma from FAS-dependent immune surveillance by reducing RUNX3/ETS1-driven FAS-expression.
Cell Death Differ. 2025 May;32(5):899-910. doi: 10.1038/s41418-025-01445-3. Epub 2025 Jan 23.
4
Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic Th17 cell state.
Immunity. 2024 Nov 12;57(11):2565-2582.e6. doi: 10.1016/j.immuni.2024.09.017. Epub 2024 Oct 23.
5
Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation.
Nucleic Acids Res. 2024 Sep 23;52(17):10276-10296. doi: 10.1093/nar/gkae706.
7
The transcription factor Aiolos restrains the activation of intestinal intraepithelial lymphocytes.
Nat Immunol. 2024 Jan;25(1):77-87. doi: 10.1038/s41590-023-01693-w. Epub 2023 Dec 4.

本文引用的文献

1
Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays.
J Biol Chem. 2007 Mar 30;282(13):9703-9712. doi: 10.1074/jbc.M611752200. Epub 2007 Jan 26.
2
Integrative molecular concept modeling of prostate cancer progression.
Nat Genet. 2007 Jan;39(1):41-51. doi: 10.1038/ng1935. Epub 2006 Dec 17.
3
Mining housekeeping genes with a Naive Bayes classifier.
BMC Genomics. 2006 Oct 30;7:277. doi: 10.1186/1471-2164-7-277.
5
TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer.
Cancer Res. 2006 Apr 1;66(7):3396-400. doi: 10.1158/0008-5472.CAN-06-0168.
6
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.
Science. 2005 Oct 28;310(5748):644-8. doi: 10.1126/science.1117679.
7
Core transcriptional regulatory circuitry in human embryonic stem cells.
Cell. 2005 Sep 23;122(6):947-56. doi: 10.1016/j.cell.2005.08.020.
8
enoLOGOS: a versatile web tool for energy normalized sequence logos.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W389-92. doi: 10.1093/nar/gki439.
9
Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.
Nature. 2005 Mar 17;434(7031):338-45. doi: 10.1038/nature03441. Epub 2005 Feb 27.
10
Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation.
EMBO J. 2005 Feb 9;24(3):635-44. doi: 10.1038/sj.emboj.7600538. Epub 2005 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验