Suppr超能文献

γ-氨基丁酸亲和力塑造丘脑核团中的抑制性突触后电流。

GABA affinity shapes IPSCs in thalamic nuclei.

作者信息

Schofield Claude M, Huguenard John R

机构信息

Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA.

出版信息

J Neurosci. 2007 Jul 25;27(30):7954-62. doi: 10.1523/JNEUROSCI.0377-07.2007.

Abstract

Precise neural inhibition in thalamocortical circuits is required for the generation of sleep spindles and suppression of hypersynchrony associated with epileptiform activity. Accordingly, the time course of GABA(A) receptor-mediated IPSC events is an important parameter influencing the strength of inhibitory signaling. In the thalamus, two distinct types of IPSC kinetics are observed: thalamocortical relay neurons in the ventrobasal nucleus (VB) exhibit a fast decaying IPSC, whereas neurons in the adjacent reticular nucleus (RTN) display a long-lasting, slowly decaying IPSC. Here, we used patch-clamp electrophysiology and computational modeling to elucidate the basis for IPSC kinetic heterogeneity in the thalamus. Rapid application of GABA to excised membrane patches revealed that decay kinetics were attributable to intrinsic differences in GABA(A) receptor deactivation. Examination of desensitization and gating properties revealed these to be similar in VB and RTN, with the notable lack of fast and long-lasting desensitized states in both cell types. Computational simulations demonstrate that slow GABA binding and unbinding rates could reproduce the characteristic long-lasting IPSCs in RTN cells. These results indicate that within thalamic circuits, a powerful diversity of inhibitory function can result from simple differences in underlying GABA(A) receptor affinity.

摘要

丘脑皮质回路中精确的神经抑制对于睡眠纺锤波的产生以及与癫痫样活动相关的超同步抑制是必需的。因此,GABA(A)受体介导的IPSC事件的时间进程是影响抑制性信号强度的一个重要参数。在丘脑中,观察到两种不同类型的IPSC动力学:腹侧基底核(VB)中的丘脑皮质中继神经元表现出快速衰减的IPSC,而相邻网状核(RTN)中的神经元则显示出持久、缓慢衰减的IPSC。在这里,我们使用膜片钳电生理学和计算建模来阐明丘脑中IPSC动力学异质性的基础。将GABA快速应用于切除的膜片显示,衰减动力学归因于GABA(A)受体失活的内在差异。对脱敏和门控特性的检查表明,它们在VB和RTN中相似,两种细胞类型均明显缺乏快速和持久的脱敏状态。计算模拟表明,缓慢的GABA结合和解离速率可以重现RTN细胞中特征性的持久IPSC。这些结果表明,在丘脑回路中,潜在的GABA(A)受体亲和力的简单差异可能导致强大的抑制功能多样性。

相似文献

1
GABA affinity shapes IPSCs in thalamic nuclei.
J Neurosci. 2007 Jul 25;27(30):7954-62. doi: 10.1523/JNEUROSCI.0377-07.2007.
3
The modulation of synaptic GABA(A) receptors in the thalamus by eszopiclone and zolpidem.
J Pharmacol Exp Ther. 2009 Mar;328(3):1000-6. doi: 10.1124/jpet.108.146084. Epub 2008 Nov 25.
4
GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons.
J Neurophysiol. 1997 Nov;78(5):2280-6. doi: 10.1152/jn.1997.78.5.2280.
6
Prolactin-releasing peptide enhances synaptic transmission in rat thalamus.
Neuroscience. 2011 Jan 13;172:1-11. doi: 10.1016/j.neuroscience.2010.10.079. Epub 2010 Nov 4.
7
GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of alpha3- and alpha1-subunit-containing GABAA receptors.
Eur J Neurosci. 2007 Aug;26(3):657-65. doi: 10.1111/j.1460-9568.2007.05693.x. Epub 2007 Jul 25.
9
Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms.
Neuropharmacology. 2009 Feb;56(2):438-47. doi: 10.1016/j.neuropharm.2008.09.015. Epub 2008 Oct 9.
10
MeCP2 is required for normal development of GABAergic circuits in the thalamus.
J Neurophysiol. 2010 May;103(5):2470-81. doi: 10.1152/jn.00601.2009. Epub 2010 Mar 3.

引用本文的文献

2
Enhanced Synaptic Inhibition in the Dorsolateral Geniculate Nucleus in a Mouse Model of Glaucoma.
eNeuro. 2024 Jul 11;11(7). doi: 10.1523/ENEURO.0263-24.2024. Print 2024 Jul.
5
Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP.
Mol Neurobiol. 2022 Jun;59(6):3431-3448. doi: 10.1007/s12035-022-02803-9. Epub 2022 Mar 23.
7
Dravet syndrome-associated mutations in , and define the genetic landscape of defects of GABA receptors.
Brain Commun. 2021 Mar 11;3(2):fcab033. doi: 10.1093/braincomms/fcab033. eCollection 2021.
8
Effects of GABA Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling.
Front Mol Neurosci. 2020 Nov 20;13:602559. doi: 10.3389/fnmol.2020.602559. eCollection 2020.
9
A neuroactive steroid with a therapeutically interesting constellation of actions at GABA and NMDA receptors.
Neuropharmacology. 2021 Feb 1;183:108358. doi: 10.1016/j.neuropharm.2020.108358. Epub 2020 Oct 25.
10
Regulation of GABA Receptor Subunit Expression in Substance Use Disorders.
Int J Mol Sci. 2020 Jun 22;21(12):4445. doi: 10.3390/ijms21124445.

本文引用的文献

1
Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites.
Nature. 2006 Nov 23;444(7118):486-9. doi: 10.1038/nature05324. Epub 2006 Nov 15.
4
Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts.
EMBO J. 2006 Sep 20;25(18):4381-9. doi: 10.1038/sj.emboj.7601309.
6
Fast IPSCs in rat thalamic reticular nucleus require the GABAA receptor beta1 subunit.
J Physiol. 2006 Apr 15;572(Pt 2):459-75. doi: 10.1113/jphysiol.2006.106617. Epub 2006 Feb 9.
7
An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons.
J Neurophysiol. 2005 Dec;94(6):4491-501. doi: 10.1152/jn.00421.2005. Epub 2005 Sep 14.
8
Sleep, epilepsy and thalamic reticular inhibitory neurons.
Trends Neurosci. 2005 Jun;28(6):317-24. doi: 10.1016/j.tins.2005.03.007.
9
GABAA receptor kinetics in the cerebellar nuclei: evidence for detection of transmitter from distant release sites.
Biophys J. 2005 Mar;88(3):1740-54. doi: 10.1529/biophysj.104.055814. Epub 2004 Dec 30.
10
Four amino acids in the alpha subunits determine the gamma-aminobutyric acid sensitivities of GABAA receptor subtypes.
J Biol Chem. 2004 Aug 20;279(34):35193-200. doi: 10.1074/jbc.M405653200. Epub 2004 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验