Schofield Claude M, Huguenard John R
Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA.
J Neurosci. 2007 Jul 25;27(30):7954-62. doi: 10.1523/JNEUROSCI.0377-07.2007.
Precise neural inhibition in thalamocortical circuits is required for the generation of sleep spindles and suppression of hypersynchrony associated with epileptiform activity. Accordingly, the time course of GABA(A) receptor-mediated IPSC events is an important parameter influencing the strength of inhibitory signaling. In the thalamus, two distinct types of IPSC kinetics are observed: thalamocortical relay neurons in the ventrobasal nucleus (VB) exhibit a fast decaying IPSC, whereas neurons in the adjacent reticular nucleus (RTN) display a long-lasting, slowly decaying IPSC. Here, we used patch-clamp electrophysiology and computational modeling to elucidate the basis for IPSC kinetic heterogeneity in the thalamus. Rapid application of GABA to excised membrane patches revealed that decay kinetics were attributable to intrinsic differences in GABA(A) receptor deactivation. Examination of desensitization and gating properties revealed these to be similar in VB and RTN, with the notable lack of fast and long-lasting desensitized states in both cell types. Computational simulations demonstrate that slow GABA binding and unbinding rates could reproduce the characteristic long-lasting IPSCs in RTN cells. These results indicate that within thalamic circuits, a powerful diversity of inhibitory function can result from simple differences in underlying GABA(A) receptor affinity.
丘脑皮质回路中精确的神经抑制对于睡眠纺锤波的产生以及与癫痫样活动相关的超同步抑制是必需的。因此,GABA(A)受体介导的IPSC事件的时间进程是影响抑制性信号强度的一个重要参数。在丘脑中,观察到两种不同类型的IPSC动力学:腹侧基底核(VB)中的丘脑皮质中继神经元表现出快速衰减的IPSC,而相邻网状核(RTN)中的神经元则显示出持久、缓慢衰减的IPSC。在这里,我们使用膜片钳电生理学和计算建模来阐明丘脑中IPSC动力学异质性的基础。将GABA快速应用于切除的膜片显示,衰减动力学归因于GABA(A)受体失活的内在差异。对脱敏和门控特性的检查表明,它们在VB和RTN中相似,两种细胞类型均明显缺乏快速和持久的脱敏状态。计算模拟表明,缓慢的GABA结合和解离速率可以重现RTN细胞中特征性的持久IPSC。这些结果表明,在丘脑回路中,潜在的GABA(A)受体亲和力的简单差异可能导致强大的抑制功能多样性。