Springael Jean-Yves, Urizar Eneko, Costagliola Sabine, Vassart Gilbert, Parmentier Marc
Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, Elsevier Inc, B-1070, Brussels, Belgium.
Pharmacol Ther. 2007 Sep;115(3):410-8. doi: 10.1016/j.pharmthera.2007.06.004. Epub 2007 Jun 27.
Allosteric regulation of ligand binding is a well-established mechanism regulating the function of G protein-coupled receptors (GPCR). Allosteric modulators have been considered so far as molecules binding to an allosteric site, distinct from that of the reference ligand (orthosteric site), and able to modulate the binding affinity at the orthosteric site and/or the signaling properties resulting from orthosteric site occupancy. Given that most GPCR are known to form dimers or higher order oligomers, we explored whether allosteric interactions could also occur between protomers within oligomeric arrays, thereby influencing binding and signaling receptor properties. Two main conclusions emerged from such studies. First, allosteric modulators can affect one receptor by binding to another receptor within a dimeric or oligomeric complex. Second, allosteric modulators might act on a given receptor by targeting the "orthosteric site" in another receptor of the complex. Allosteric regulation within di(oligo)mers thus implies that the pharmacological properties of a given receptor subtype can be influenced by the array of dimerization partners coexpressed in each particular cell type. Ligands could thus act as agonists or antagonists on 1 receptor, while modulating allosterically the function of a variety of other receptors to which they do not bind directly. Allosteric regulation across GPCR oligomeric interfaces is expected to greatly influence the practice of pharmacology. It will likely affect the design of drug discovery programs, which rely mostly on the overexpression of the receptor of interest in a cell line, thereby focusing on homo-oligomers and ignoring the potential effects of other partners.
配体结合的变构调节是一种成熟的调节G蛋白偶联受体(GPCR)功能的机制。到目前为止,变构调节剂被认为是与别构位点结合的分子,该位点与参考配体(正构位点)的结合位点不同,并且能够调节正构位点的结合亲和力和/或正构位点占据所产生的信号特性。鉴于大多数GPCR已知会形成二聚体或更高阶的寡聚体,我们探讨了变构相互作用是否也会在寡聚体阵列中的亚基之间发生,从而影响受体的结合和信号特性。这些研究得出了两个主要结论。第一,变构调节剂可以通过与二聚体或寡聚体复合物中的另一个受体结合来影响一个受体。第二,变构调节剂可能通过靶向复合物中另一个受体的“正构位点”来作用于给定的受体。因此,二(寡)聚体内的变构调节意味着给定受体亚型的药理学特性可能会受到在每种特定细胞类型中共表达的二聚化伴侣阵列的影响。因此,配体可以作为一种受体的激动剂或拮抗剂,同时变构调节它们不直接结合的多种其他受体的功能。跨GPCR寡聚体界面的变构调节预计将极大地影响药理学实践。它可能会影响药物发现计划的设计,这些计划主要依赖于在细胞系中过表达感兴趣的受体,从而专注于同型寡聚体而忽略其他伴侣的潜在影响。