Lang Richard J, Hashitani Hikaru, Tonta Mary A, Parkington Helena C, Suzuki Hikaru
Department of Physiology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.
J Physiol. 2007 Sep 15;583(Pt 3):1049-68. doi: 10.1113/jphysiol.2007.137034. Epub 2007 Jul 26.
Electrical rhythmicity in the renal pelvis provides the fundamental drive for the peristaltic contractions that propel urine from the kidney to bladder for storage until micturition. Although atypical smooth muscles (ASMCs) within the most proximal regions of the renal pelvis have long been implicated as the pacemaker cells, the presence of a sparsely distributed population of rhythmically active Kit-positive interstitial cells of Cajal-like cells (ICC-LCs) have confounded our understanding of pelviureteric peristalsis. We have recorded the electrical activity and separately visualized changes in intracellular Ca(2+) concentration in typical smooth muscle cells (TSMCs), ASMCs and ICC-LCs using intracellular microelectrodes and a fluorescent Ca(2+) indicator, fluo-4. Nifedipine (1-10 microm)-sensitive driven action potentials and Ca(2+) waves (frequency 6-15 min(-1)) propagated through the TSMC layer at a velocity of 1-2 mm s(-1). High frequency (10-40 min(-1)) Ca(2+) transients and spontaneous transient depolarizations (STDs) were recorded in ASMCs in the absence or presence of 1 microm nifedipine. ICC-LCs displayed low frequency (1-3 min(-1)) Ca(2+) transients which we speculated arose from cells that displayed action potentials with long plateaus (2-5 s). Neither electrical activity propagated over distances > 50 microm. In 1 microm nifedipine, ASMCs or ICC-LCs separated by < 30 microm displayed some synchronicity in their Ca(2+) transient discharge suggesting that they may well be acting as 'point sources' of excitation to the TSMC layer. We speculate that ASMCs act as the primary pacemaker in the renal pelvis while ICC-LCs play a supportive role, but can take over pacemaking in the absence of the proximal pacemaker drive.
肾盂的电节律性为蠕动收缩提供了基本驱动力,这种蠕动收缩将尿液从肾脏输送到膀胱进行储存,直至排尿。尽管肾盂最近端区域的非典型平滑肌(ASMCs)长期以来一直被认为是起搏细胞,但稀疏分布的、有节律活动的类 Cajal 间质细胞(ICC-LCs)的存在使我们对肾盂输尿管蠕动的理解变得复杂。我们使用细胞内微电极和荧光 Ca(2+)指示剂 fluo-4,记录了典型平滑肌细胞(TSMCs)、ASMCs 和 ICC-LCs 的电活动,并分别观察了细胞内 Ca(2+)浓度的变化。硝苯地平(1-10 微摩尔)敏感的驱动动作电位和 Ca(2+)波(频率 6-15 次/分钟)以 1-2 毫米/秒的速度通过 TSMC 层传播。在有无 1 微摩尔硝苯地平的情况下,ASMCs 中记录到高频(10-40 次/分钟)的 Ca(2+)瞬变和自发瞬态去极化(STDs)。ICC-LCs 显示出低频(1-3 次/分钟)的 Ca(2+)瞬变,我们推测这是由具有长平台期(2-5 秒)动作电位的细胞引起的。电活动都没有传播超过 50 微米的距离。在 1 微摩尔硝苯地平存在的情况下,相隔小于 30 微米的 ASMCs 或 ICC-LCs 在其 Ca(2+)瞬变放电中表现出一定的同步性,这表明它们很可能是 TSMC 层兴奋的“点源”。我们推测 ASMCs 是肾盂的主要起搏细胞,而 ICC-LCs 起支持作用,但在近端起搏驱动缺失时可以接管起搏功能。