Qin Qin, Gore John C, Does Mark D, Avison Malcolm J, de Graaf Robin A
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA.
Magn Reson Med. 2007 Jul;58(1):19-26. doi: 10.1002/mrm.21274.
Conventional single-voxel localization for MR spectroscopy (MRS) is restricted to selecting only rectangular-shaped regions of interest (ROIs). The complexity of tissue shapes of interest and the desire to maximize the signal-to-noise ratio (SNR) while minimizing partial-volume effects require more sophisticated localization techniques. A group of spatially selective RF pulses are proposed in this work for the measurement of spectra from regions of arbitrary shape based on using a radial trajectory in k-space. Utilizing a single k-line per excitation results in a broad spectroscopic bandwidth. However, spatial localization accuracy is compromised for nutation angles > 10 degrees because of the small-tip-angle approximation of the Bloch equations. By interleaving multiple radial k-lines per excitation with nonselective refocusing pulses, one can achieve accurate localization for nutation angles up to 90 degrees while simultaneously maintaining the spectral bandwidth. The technique is described and compared with existing localization methods, and in vivo results are demonstrated.
磁共振波谱(MRS)的传统单体素定位仅限于选择矩形感兴趣区域(ROI)。感兴趣组织形状的复杂性以及在最小化部分容积效应的同时最大化信噪比(SNR)的需求,需要更复杂的定位技术。在这项工作中,提出了一组空间选择性射频脉冲,用于基于在k空间中使用径向轨迹来测量任意形状区域的波谱。每次激发使用单条k线可实现较宽的波谱带宽。然而,由于布洛赫方程的小翻转角近似,对于翻转角>10度的情况,空间定位精度会受到影响。通过在每次激发时将多条径向k线与非选择性重聚焦脉冲交织,可以实现高达90度翻转角的精确定位,同时保持波谱带宽。描述了该技术并与现有定位方法进行了比较,并展示了体内结果。