Suppr超能文献

用于对存在成员更替的滚动治疗组纵向数据进行建模的分析方法。

Analytic methods for modeling longitudinal data from rolling therapy groups with membership turnover.

作者信息

Morgan-Lopez Antonio A, Fals-Stewart William

机构信息

Behavioral Health and Criminal Justice Research Division, RTI International, Research Triangle Park, NC 27709, USA.

出版信息

J Consult Clin Psychol. 2007 Aug;75(4):580-93. doi: 10.1037/0022-006X.75.4.580.

Abstract

Interventions for a variety of emotional and behavioral problems are commonly delivered in the context of treatment groups, with many using rolling admission to sustain membership (i.e., admission, dropout, and discharge from group are perpetual and ongoing). The authors present an overview of the analytic challenges inherent in rolling group data and outline commonly used (but flawed) analytic and design approaches to addressing (or sidestepping) these issues. Moreover, the authors propose use of latent class pattern mixture models (LCPMMs) as a statistically and conceptually defensible approach for modeling treatment data from rolling groups. The LCPMM approach is illustrated with rolling group data from a group-based alcoholism pilot treatment trial (N = 128). Different inferences were made with regard to treatment efficacy under LCPMM vs. the commonly used standard group-clustered latent growth model (LGM); coupled with other preliminary findings in this area, inferences from LGMs may be overly liberal when applied to data from rolling groups. Continued work on data analytic difficulties in groups with membership turnover is critical for furthering the ecological validity of research on behavioral treatments.

摘要

针对各种情绪和行为问题的干预措施通常在治疗小组的背景下实施,许多小组采用滚动式接纳来维持成员数量(即小组的加入、退出和出院是持续不断的)。作者概述了滚动式小组数据中固有的分析挑战,并概述了用于解决(或回避)这些问题的常用(但有缺陷)分析和设计方法。此外,作者建议使用潜在类别模式混合模型(LCPMMs)作为一种在统计和概念上合理的方法,用于对滚动式小组的治疗数据进行建模。通过一项基于小组的酒精中毒试点治疗试验(N = 128)的滚动式小组数据对LCPMM方法进行了说明。在LCPMM与常用的标准小组聚类潜在增长模型(LGM)下,对治疗效果得出了不同的推论;结合该领域的其他初步研究结果,当将LGM应用于滚动式小组的数据时,其推论可能过于宽松。继续研究成员流动小组中的数据分析困难对于提高行为治疗研究的生态效度至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验