Suppr超能文献

Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.

作者信息

Fendley Paul, Moore Joel E, Xu Cenke

机构信息

Department of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051120. doi: 10.1103/PhysRevE.75.051120. Epub 2007 May 25.

Abstract

We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k{B} approximately 0.3661 ... centered and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.

摘要

相似文献

1
Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051120. doi: 10.1103/PhysRevE.75.051120. Epub 2007 May 25.
2
Classical topological order in Abelian and non-Abelian generalized height models.
Phys Rev Lett. 2013 Dec 13;111(24):245701. doi: 10.1103/PhysRevLett.111.245701. Epub 2013 Dec 11.
3
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model.
Phys Rev Lett. 2016 Aug 26;117(9):096405. doi: 10.1103/PhysRevLett.117.096405. Epub 2016 Aug 25.
4
Generalized Kitaev models and extrinsic non-Abelian twist defects.
Phys Rev Lett. 2015 Jan 16;114(2):026401. doi: 10.1103/PhysRevLett.114.026401. Epub 2015 Jan 13.
5
Identifying non-Abelian topological order through minimal entangled states.
Phys Rev Lett. 2014 Mar 7;112(9):096803. doi: 10.1103/PhysRevLett.112.096803. Epub 2014 Mar 4.
6
Fibonacci topological order from quantum nets.
Phys Rev Lett. 2013 Jun 28;110(26):260408. doi: 10.1103/PhysRevLett.110.260408.
7
Lattice Defects in the Kitaev Honeycomb Model.
J Phys Chem A. 2016 May 19;120(19):3326-34. doi: 10.1021/acs.jpca.6b00149. Epub 2016 Feb 29.
8
Critical line of honeycomb-lattice anisotropic Ising antiferromagnets in a field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):024102. doi: 10.1103/PhysRevE.87.024102. Epub 2013 Feb 13.
9
Theory of topological edges and domain walls.
Phys Rev Lett. 2009 Jun 5;102(22):220403. doi: 10.1103/PhysRevLett.102.220403.
10
Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.
Phys Rev Lett. 2006 Feb 3;96(4):047201. doi: 10.1103/PhysRevLett.96.047201. Epub 2006 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验