Monthus Cécile, Garel Thomas
Service de Physique Théorique, CEA/DSM/SPhT, Unité de Recherche Associée au CNRS, Gif-sur-Yvette cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051122. doi: 10.1103/PhysRevE.75.051122. Epub 2007 May 30.
We consider the model of the directed polymer in a random medium of dimension 1+3 , and investigate its multifractal properties at the localization-delocalization transition. In close analogy with models of the quantum Anderson localization transition, where the multifractality of critical wavefunctions is well established, we analyze the statistics of the position weights w{L}(r[over]) of the endpoint of the polymer of length L via the moments [equation: see text]. We measure the generalized exponents tau(q) and tauover governing the decay of the typical values [equation: see text] and disorder-averaged values Y{q}(L)[over] approximately L{-tauover} , respectively. To understand the difference between these exponents, tau(q) not equal to tauover above some threshold q>q{c} approximately 2 , we compute the probability distributions of [equation: see text] over the samples: We find that these distributions becomes scale invariant with a power-law tail 1/y{1+x{q}} . These results thus correspond to the Evers-Mirlin scenario [Phys. Rev. Lett. 84, 3690 (2000)] for the statistics of inverse participation ratios at the Anderson localization transitions. Finally, the finite-size scaling analysis in the critical region yields the correlation length exponent nu approximately 2 .
我们考虑一维加三维随机介质中定向聚合物的模型,并研究其在局域化 - 非局域化转变处的多重分形性质。与量子安德森局域化转变模型非常类似,在该模型中临界波函数的多重分形性已得到充分确立,我们通过矩[公式:见原文]来分析长度为(L)的聚合物端点位置权重(w_{L}(\vec{r}))的统计特性。我们分别测量控制典型值[公式:见原文]和无序平均值得(Y_{q}(L)\approx L^{-\overline{\tau}(q)})衰减的广义指数(\tau(q))和(\overline{\tau}(q))。为了理解在某个阈值(q > q_{c}\approx2)之上这些指数(\tau(q)\neq\overline{\tau}(q))的差异,我们计算样本上[公式:见原文]的概率分布:我们发现这些分布变得具有幂律尾部(1/y^{1 + x_{q}})的尺度不变性。因此,这些结果对应于安德森局域化转变处逆参与率统计的埃弗斯 - 米尔林情形[《物理评论快报》84, 3690 (2000)]。最后,临界区域的有限尺寸标度分析得出关联长度指数(\nu\approx2)。