Suppr超能文献

噬菌体P22中的多聚头部形成确定了衣壳蛋白中构象转换所需的一个区域。

Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.

作者信息

Parent Kristin N, Suhanovsky Margaret M, Teschke Carolyn M

机构信息

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.

出版信息

Mol Microbiol. 2007 Sep;65(5):1300-10. doi: 10.1111/j.1365-2958.2007.05868.x. Epub 2007 Aug 3.

Abstract

Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.

摘要

噬菌体P22外壳蛋白中的18个单氨基酸取代会导致温度敏感型折叠缺陷(tsf)。三个定位在柔性环上的基因内全局抑制(su)取代(D163G、T166I和F170L)可挽救几种tsf外壳蛋白的折叠。在这里,我们在不存在原始tsf取代的情况下研究su取代。没有一个su变体外壳蛋白表现出蛋白质折叠缺陷。单个su取代对体内噬菌体产生的影响很小;然而,双重和三重组合导致了冷敏感(cs)表型,这与组装缺陷一致。在病毒组装和成熟过程中,当化学性质相同的衣壳亚基形成二十面体时,衣壳亚基需要进行构象转换。通过负染色电子显微镜对双重和三重su噬菌体感染的细胞裂解物进行分析,发现在cs温度下异常结构增加。F170L外壳蛋白的体外组装导致多聚头部的产生,这在噬菌体P22中从未见过。由所有su外壳蛋白组成的纯化原衣壳在膨胀方面存在缺陷,这在体外模拟了成熟过程。我们的结果表明,先前确定的外壳蛋白表面暴露环在原衣壳组装和成熟过程中衣壳亚基的构象转换中至关重要。

相似文献

1
Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.
Mol Microbiol. 2007 Sep;65(5):1300-10. doi: 10.1111/j.1365-2958.2007.05868.x. Epub 2007 Aug 3.
2
GroEL/S substrate specificity based on substrate unfolding propensity.
Cell Stress Chaperones. 2007 Spring;12(1):20-32. doi: 10.1379/csc-219r.1.
6
A concerted mechanism for the suppression of a folding defect through interactions with chaperones.
J Biol Chem. 2004 Apr 23;279(17):17473-82. doi: 10.1074/jbc.M400467200. Epub 2004 Feb 4.
7
The role of the coat protein A-domain in p22 bacteriophage maturation.
Viruses. 2014 Jul 14;6(7):2708-22. doi: 10.3390/v6072708.
9
Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching.
Mol Microbiol. 2010 Sep;77(6):1568-82. doi: 10.1111/j.1365-2958.2010.07311.x. Epub 2010 Aug 18.

引用本文的文献

1
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.
ACS Nano. 2025 Aug 26;19(33):30275-30291. doi: 10.1021/acsnano.5c08120. Epub 2025 Aug 9.
2
Packaging contests between viral RNA molecules and kinetic selectivity.
PLoS Comput Biol. 2022 Apr 1;18(4):e1009913. doi: 10.1371/journal.pcbi.1009913. eCollection 2022 Apr.
4
A Hydrophobic Network: Intersubunit and Intercapsomer Interactions Stabilizing the Bacteriophage P22 Capsid.
J Virol. 2019 Jun 28;93(14). doi: 10.1128/JVI.00727-19. Print 2019 Jul 15.
5
The amazing HK97 fold: versatile results of modest differences.
Curr Opin Virol. 2019 Jun;36:9-16. doi: 10.1016/j.coviro.2019.02.001. Epub 2019 Mar 8.
7
Rational elicitation of cold-sensitive phenotypes.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2506-15. doi: 10.1073/pnas.1604190113. Epub 2016 Apr 18.
8
Contextual Role of a Salt Bridge in the Phage P22 Coat Protein I-Domain.
J Biol Chem. 2016 May 20;291(21):11359-72. doi: 10.1074/jbc.M116.716910. Epub 2016 Mar 22.
10
Nature's favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold.
Virology. 2015 May;479-480:487-97. doi: 10.1016/j.virol.2015.02.055. Epub 2015 Apr 8.

本文引用的文献

1
GroEL/S substrate specificity based on substrate unfolding propensity.
Cell Stress Chaperones. 2007 Spring;12(1):20-32. doi: 10.1379/csc-219r.1.
2
Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM.
Structure. 2006 Nov;14(11):1655-65. doi: 10.1016/j.str.2006.09.006.
3
Phage P22 procapsids equilibrate with free coat protein subunits.
J Mol Biol. 2007 Jan 12;365(2):513-22. doi: 10.1016/j.jmb.2006.09.088. Epub 2006 Oct 4.
4
The structure of an infectious P22 virion shows the signal for headful DNA packaging.
Science. 2006 Jun 23;312(5781):1791-5. doi: 10.1126/science.1127981. Epub 2006 May 18.
7
Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly.
Virology. 2005 Sep 15;340(1):33-45. doi: 10.1016/j.virol.2005.06.018.
8
Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity.
Curr Opin Struct Biol. 2005 Apr;15(2):227-36. doi: 10.1016/j.sbi.2005.03.008.
10
Physical principles in the construction of regular viruses.
Cold Spring Harb Symp Quant Biol. 1962;27:1-24. doi: 10.1101/sqb.1962.027.001.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验