Suppr超能文献

从非连锁标记数据估计谱系:一种贝叶斯方法。

Estimating genealogies from unlinked marker data: a Bayesian approach.

作者信息

Gasbarra Dario, Pirinen Matti, Sillanpää Mikko J, Salmela Elina, Arjas Elja

机构信息

Department of Mathematics and Statistics, University of Helsinki, P.O.Box 68, FIN-00014, Finland.

出版信息

Theor Popul Biol. 2007 Nov;72(3):305-22. doi: 10.1016/j.tpb.2007.06.004. Epub 2007 Jun 22.

Abstract

An issue often encountered in statistical genetics is whether, or to what extent, it is possible to estimate the degree to which individuals sampled from a background population are related to each other, on the basis of the available genotype data and some information on the demography of the population. In this article, we consider this question using explicit modelling of the pedigrees and gene flows at unlinked marker loci, but then restricting ourselves to a relatively recent history of the population, that is, considering the genealogy at most some tens of generations backwards in time. As a computational tool we use a Markov chain Monte Carlo numerical integration on the state space of genealogies of the sampled individuals. As illustrations of the method, we consider the question of relatedness at the level of genes/genomes (IBD estimation), using both simulated and real data.

摘要

统计遗传学中经常遇到的一个问题是,基于现有的基因型数据以及有关群体人口统计学的一些信息,是否有可能估计从背景群体中抽样的个体之间的亲缘程度,以及能估计到何种程度。在本文中,我们通过对无连锁标记位点处的谱系和基因流动进行显式建模来考虑这个问题,但随后将自己限制在群体相对较近的历史中,即考虑至多追溯几十代的系谱。作为一种计算工具,我们在抽样个体的系谱状态空间上使用马尔可夫链蒙特卡罗数值积分。作为该方法的示例,我们使用模拟数据和真实数据来考虑基因/基因组水平上的亲缘关系问题(即IBD估计)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验