[细胞壁组织和主动外排泵系统在细菌多重耐药性中的作用]

[The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].

作者信息

Hasdemir Ufuk

出版信息

Mikrobiyol Bul. 2007 Apr;41(2):309-27.

DOI:
Abstract

Multiple antibiotic resistance of clinically important bacteria are of major concern worldwide. Alterations of drug targets or enzymatic inactivation of antimicrobial agents are the well known mechanisms of antimicrobial drug resistance. Besides these well known mechanisms, recent studies have shown that a further resistance mechanism, active drug efflux, has become increasingly important in the current threat of multidrug resistance. It involves certain bacterial transport proteins which pump out toxic antimicrobial compounds from the cell. Drug efflux pump proteins in bacteria fall into five distinct protein super families [ATP binding cassette super family (ABC), Major facilitator super family (MFS), Small multidrug resistance super family (SMR), Multidrug and toxic compound extrusion (MATE) super family, Resistance-nodulation-cell division (RND) super family] and are mostly encoded by chromosomal genes. Among them, the members of RND protein super family are widely distrubuted in Gram negative bacteria and play siginificant role in both, intrinsic and acquired multidrug resistance of these bacteria with very wide substrate specificity. RND type multidrug efflux proteins usually function together with an outer membrane canal protein (OMP) and a membrane fusion protein (MFP) to pump out drugs. AcrAB-TolC of Escherichia coli and MexAB-OprM of Pseudomonas aeruginosa are the typical examples of these tripartite systems. They are constitutively expressed in wild type cells and play significant role in intrinsic resistance of these bacteria. However, multidrug resistance which is of major clinical significance, rises as a result of overexpression of these pump systems due to mutations and elevated levels of resistance are recorded to structurally unrelated antimicrobial drugs such as fluoroquinolones, beta-lactams, tetracyclines, chloramphenicol, trimethoprim, aminoglycosides and toxic compunds. Synthesis of RND type pump proteins are regulated by complex genetic mechanisms and global activator proteins (MarA, SoxS, Rob) are significant in the induction of overexpression of these efflux pump systems. Outer membrane of Gram negative bacteria with its unique lipopolysaccharide rich structure also contributes to drug efflux and other antimicrobial resistance mechanisms by reducing the influx rate of toxic antimicrobial compunds. Multidrug efflux pump proteins found in Gram positive bacteria and mycobacteria are usually the members of protein super families other than RND family and their substrate profiles are more limited. However, some of these efflux proteins (NorA, MsrA, QacA in Staphylococcus aureus; PmrA and EmeA in Streptococcus pneumoniae) have clinical significance in the resistance to several antimicrobial agents (fluoroquinolones, macrolids) and toxic substances (quarternery ammonium compounds). In this review article, the role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria have been discussed.

摘要

临床上重要细菌的多重耐药性是全球主要关注的问题。药物靶点的改变或抗菌剂的酶促失活是众所周知的抗菌药物耐药机制。除了这些众所周知的机制外,最近的研究表明,另一种耐药机制——主动药物外排,在当前多重耐药性的威胁中变得越来越重要。它涉及某些细菌转运蛋白,这些蛋白将有毒的抗菌化合物泵出细胞。细菌中的药物外排泵蛋白分为五个不同的蛋白质超家族[ATP结合盒超家族(ABC)、主要易化子超家族(MFS)、小多重耐药超家族(SMR)、多重药物和有毒化合物外排(MATE)超家族、耐药-结瘤-细胞分裂(RND)超家族],并且大多由染色体基因编码。其中,RND蛋白超家族的成员广泛分布于革兰氏阴性菌中,在这些细菌的固有和获得性多重耐药性中发挥重要作用,底物特异性非常广泛。RND型多重药物外排蛋白通常与外膜通道蛋白(OMP)和膜融合蛋白(MFP)共同发挥作用以泵出药物。大肠杆菌的AcrAB-TolC和铜绿假单胞菌的MexAB-OprM是这些三方系统的典型例子。它们在野生型细胞中组成性表达,并在这些细菌的固有耐药性中发挥重要作用。然而,具有主要临床意义的多重耐药性是由于这些泵系统因突变而过度表达导致的,并且记录到对结构不相关的抗菌药物如氟喹诺酮类、β-内酰胺类、四环素类、氯霉素、甲氧苄啶、氨基糖苷类和有毒化合物的耐药水平升高。RND型泵蛋白的合成受复杂的遗传机制调控,全局激活蛋白(MarA、SoxS、Rob)在诱导这些外排泵系统的过表达中起重要作用。革兰氏阴性菌的外膜具有独特的富含脂多糖的结构,也通过降低有毒抗菌化合物的流入速率,对外排和其他抗菌耐药机制有贡献。在革兰氏阳性菌和分枝杆菌中发现的多重药物外排泵蛋白通常是RND家族以外的蛋白质超家族成员,它们的底物谱更有限。然而,其中一些外排蛋白(金黄色葡萄球菌中的NorA、MsrA、QacA;肺炎链球菌中的PmrA和EmeA)在对几种抗菌剂(氟喹诺酮类、大环内酯类)和有毒物质(季铵化合物)的耐药性方面具有临床意义。在这篇综述文章中,讨论了细胞壁组织和主动外排泵系统在细菌多重耐药性中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索