Suppr超能文献

通过基于特征的注意力对联合搜索过程中的眼动数据进行概率建模。

Probabilistic modeling of eye movement data during conjunction search via feature-based attention.

作者信息

Rutishauser Ueli, Koch Christof

机构信息

Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Vis. 2007 Apr 12;7(6):5. doi: 10.1167/7.6.5.

Abstract

Where the eyes fixate during search is not random; rather, gaze reflects the combination of information about the target and the visual input. It is not clear, however, what information about a target is used to bias the underlying neuronal responses. We here engage subjects in a variety of simple conjunction search tasks while tracking their eye movements. We derive a generative model that reproduces these eye movements and calculate the conditional probabilities that observers fixate, given the target, on or near an item in the display sharing a specific feature with the target. We use these probabilities to infer which features were biased by top-down attention: Color seems to be the dominant stimulus dimension for guiding search, followed by object size, and lastly orientation. We use the number of fixations it took to find the target as a measure of task difficulty. We find that only a model that biases multiple feature dimensions in a hierarchical manner can account for the data. Contrary to common assumptions, memory plays almost no role in search performance. Our model can be fit to average data of multiple subjects or to individual subjects. Small variations of a few key parameters account well for the intersubject differences. The model is compatible with neurophysiological findings of V4 and frontal eye fields (FEF) neurons and predicts the gain modulation of these cells.

摘要

在搜索过程中眼睛的注视点并非随机;相反,注视反映了关于目标的信息与视觉输入的结合。然而,尚不清楚关于目标的哪些信息被用于使潜在的神经元反应产生偏差。我们在此让受试者参与各种简单的联合搜索任务,同时追踪他们的眼动。我们推导了一个生成模型来重现这些眼动,并计算在给定目标的情况下,观察者注视显示中与目标共享特定特征的项目上或其附近的条件概率。我们使用这些概率来推断哪些特征受到了自上而下注意力的偏差:颜色似乎是引导搜索的主要刺激维度,其次是物体大小,最后是方向。我们将找到目标所需的注视次数用作任务难度的度量。我们发现只有一个以分层方式使多个特征维度产生偏差的模型才能解释这些数据。与常见假设相反,记忆在搜索性能中几乎不起作用。我们的模型可以拟合多个受试者的平均数据或个体受试者的数据。几个关键参数的微小变化很好地解释了个体间的差异。该模型与V4和额叶眼区(FEF)神经元的神经生理学发现相符,并预测了这些细胞的增益调制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验