Suppr超能文献

通过延时原子力显微镜观察单个胶原纤维的细胞重塑。

Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM.

作者信息

Friedrichs Jens, Taubenberger Anna, Franz Clemens M, Muller Daniel J

机构信息

BioTechnological Center, University of Technology Dresden, Tatzberg 47-51, 01307 Dresden, Germany.

出版信息

J Mol Biol. 2007 Sep 21;372(3):594-607. doi: 10.1016/j.jmb.2007.06.078. Epub 2007 Jul 3.

Abstract

The extracellular matrix in tissues such as bone, tendon and cornea contains ordered, parallel arrays of collagen type I fibrils. Cells embedded in these matrices frequently co-align with the collagen fibrils, suggesting that ordered fibrils provide structural or signalling cues for cell polarization. To study mechanisms of matrix-induced cell alignment, we used nanoscopically defined two-dimensional matrices assembled of highly aligned collagen type I fibrils. On these matrices, different cell lines expressing integrin alpha(2)beta(1) polarized strongly in the fibril direction. In contrast, alpha(2)beta(1)-deficient cells adhered but polarized less well, suggesting a role of integrin alpha(2)beta(1) in the alignment process. Time-lapse atomic force microscopy (AFM) demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization was prevented. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix, leading to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.

摘要

在诸如骨骼、肌腱和角膜等组织中,细胞外基质包含有序、平行排列的I型胶原纤维。嵌入这些基质中的细胞通常与胶原纤维共同排列,这表明有序的纤维为细胞极化提供了结构或信号线索。为了研究基质诱导细胞排列的机制,我们使用了由高度排列的I型胶原纤维组装而成的纳米级二维基质。在这些基质上,表达整合素α(2)β(1)的不同细胞系在纤维方向上强烈极化。相比之下,缺乏α(2)β(1)的细胞能够黏附但极化程度较差,这表明整合素α(2)β(1)在排列过程中发挥作用。延时原子力显微镜(AFM)显示,在排列过程中,细胞通过重新定向单个胶原纤维使基质变形。细胞不对称地使胶原基质变形,揭示了基质刚性的各向异性。当通过化学交联使基质刚性均匀化或当基质由拉伸强度降低的胶原纤维形成时,细胞极化受到抑制。这表明胶原纤维的高拉伸强度和柔韧性都有助于基质的各向异性刚性,导致定向细胞牵引力和细胞极化。在排列过程中,细胞突起从下方和上方接触胶原基质。细胞突起与胶原纤维的这种复杂缠结可能通过最大化细胞牵引力进一步促进细胞排列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验